312,193 research outputs found

    Theoretical and Experimental Adsorption Studies of Polyelectrolytes on an Oppositely Charged Surface

    Full text link
    Using self-assembly techniques, x-ray reflectivity measurements, and computer simulations, we study the effective interaction between charged polymer rods and surfaces. Long-time Brownian dynamics simulations are used to measure the effective adhesion force acting on the rods in a model consisting of a planar array of uniformly positively charged, stiff rods and a negatively charged planar substrate in the presence of explicit monovalent counterions and added monovalent salt ions in a continuous, isotropic dielectric medium. This electrostatic model predicts an attractive polymer-surface adhesion force that is weakly dependent on the bulk salt concentration and that shows fair agreement with a Debye-Huckel approximation for the macroion interaction at salt concentrations near 0.1 M. Complementary x-ray reflectivity experiments on poly(diallyldimethyl ammonium) chloride (PDDA) monolayer films on the native oxide of silicon show that monolayer structure, electron density, and surface roughness are likewise independent of the bulk ionic strength of the solution.Comment: Revtex, prb format; uses amssym

    Electromagnetic Energy for a Charged Kerr Black Hole in a Uniform Magnetic Field

    Get PDF
    With the Komar mass formula we calculate the electromagnetic energy for a charged Kerr black hole in a uniform magnetic field. We find that the total electromagnetic energy takes the minimum when the Kerr black hole possesses a non-zero net charge Q=2ξB0JHQ = 2\xi B_0 J_H where B0B_0 is the strength of the magnetic field, JHJ_H is the angular momentum of the black hole, ξ\xi is a dimensionless parameter determined by the spin of the black hole.Comment: 9 pages, 1 figur

    Exploring the Latest Union2 SNIa Dataset by Using Model-Independent Parametrization Methods

    Full text link
    We explore the cosmological consequences of the recently released Union2 sample of 557 Type Ia supernovae (SNIa). Combining this latest SNIa dataset with the Cosmic microwave background (CMB) anisotropy data from the Wilkinson Microwave Anisotropy Probe 7 year (WMAP7) observations and the baryon acoustic oscillation (BAO) results from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), we measure the dark energy density function f(z)ρde(z)/ρde(0)f(z)\equiv \rho_{de}(z)/\rho_{de}(0) as a free function of redshift. Two model-independent parametrization methods (the binned parametrization and the polynomial interpolation parametrization) are used in this paper. By using the χ2\chi^2 statistic and the Bayesian information criterion, we find that the current observational data are still too limited to distinguish which parametrization method is better, and a simple model has advantage in fitting observational data than a complicated model. Moreover, it is found that all these parametrizations demonstrate that the Union2 dataset is still consistent with a cosmological constant at 1σ\sigma confidence level. Therefore, the Union2 dataset is different from the Constitution SNIa dataset, which more favors a dynamical dark energy.Comment: 11 pages, 8 figures, 2 tables, accepted for publication in PR

    Classification of the Entangled states L\times N\times N

    Full text link
    We presented a general classification scheme for the tripartite L×N×NL\times N\times N entangled system under stochastic local operation and classical communication. The whole classification procedure consists of two correlated parts: the simultaneous similarity transformation of a commuting matrix pair into a canonical form and the study of internal symmetry of parameters in the canonical form. Based on this scheme, a concrete example of entanglement classification for a 3×N×N3\times N\times N system is given.Comment: 21 pages; published in Phys. Rev.
    corecore