40 research outputs found

    Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri

    Get PDF
    The present study investigated the species level based microbial community and metabolome in corn silage inoculated with or without homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri using the PacBio SMRT Sequencing and time-of-flight mass spectrometry (GC-TOF/MS). Chopped whole crop corn was treated with (1) deionized water (control), (2) Lactobacillus plantarum, or (3) Lactobacillus buchneri. The chopped whole crop corn was ensiled in vacuum-sealed polyethylene bags containing 300 g of fresh forge for 90 days, with three replicates for each treatment. The results showed that a total of 979 substances were detected, and 316 different metabolites were identified. Some metabolites with antimicrobial activity were detected in whole crop corn silage, such as catechol, 3-phenyllactic acid, 4-hydroxybenzoic acid, azelaic acid, 3,4-dihydroxybenzoic acid and 4-hydroxycinnamic acid. Catechol, pyrogallol and ferulic acid with antioxidant property, 4-hydroxybutyrate with nervine activity, and linoleic acid with cholesterol lowering effects, were detected in present study. In addition, a flavoring agent of myristic acid and a depression mitigation substance of phenylethylamine were also found in this study. Samples treated with inoculants presented more biofunctional metabolites of organic acids, amino acids and phenolic acids than untreated samples. The Lactobacillus species covered over 98% after ensiling, and were mainly comprised by the L. acetotolerans, L. silagei, L. parafarraginis, L. buchneri and L. odoratitofui. As compared to the control silage, inoculation of L. plantarum increased the relative abundances of L. acetotolerans, L. buchneri and L. parafarraginis, and a considerable decline in the proportion of L. silagei was observed; whereas an obvious decrease in L. acetotolerans and increases in L. odoratitofui and L. farciminis were observed in the L. buchneri inoculated silage. Therefore, inoculation of L. plantarum and L. buchneri regulated the microbial composition and metabolome of the corn silage with different behaviors. The present results indicated that profiling of silage microbiome and metabolome might improve our current understanding of the biological process underlying silage formation

    Metabolomics-Based Identification of Bleached Shellac in Liquid Fruit Wax

    Get PDF
    The purpose of this study was to identify whether liquid fruit waxes could be added with bleached shellac. The compounds of bleached shellac from different sources were analyzed by targeted metabolomics based on liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with liquid chromatography with evaporative light scattering detection. Twelve target compounds were selected by multivariate statistical analysis including unsupervised principal component analysis (PCA) and supervised partial least squares discriminant analysis (PLS-DA). According to variable importance in the projection (VIP) value, five differential compounds and seven shared compounds were identified. Finally, the viability of this method in the detection of commercial liquid fruit wax products was verified using the shared compounds as biomarkers. These results showed that chromatography combined with mass spectrometry can identify whether bleached shellac could be added in liquid fruit wax

    Coproduction of Furfural, Phenolated Lignin and Fermentable Sugars from Bamboo with One-Pot Fractionation Using Phenol-Acidic 1,4-Dioxane

    No full text
    A one-pot fractionation method of Moso bamboo into hemicellulose, lignin, and cellulose streams was used to produce furfural, phenolated lignin, and fermentable sugars in the acidic 1,4-dioxane system. Xylan was depolymerized to furfural at a yield of 93.81% of the theoretical value; however, the prolonged processing time (5 h) led to a high removal ratio of glucan (37.21%) in the absence of phenol. The optimum moderate condition (80 °C for 2 h with 2.5% phenol) was determined through the high fractionation efficiency. Consequently, 77.28% of xylan and 84.83% of lignin were removed and presented in the hydrolysate, while 91.08% of glucan was reserved in the solid portion. The formation of furfural from xylan remained high, with a yield of 92.92%. The extracted lignin was phenolated with an increasing content of phenolic hydroxyl. The fractionated lignin yield was 51.88%, which suggested this could be a low-cost raw material to product the activated carbon fiber precursor. The delignified pulp was subjected to enzymatic hydrolysis and the glucose yield reached up to 99.03% of the theoretical

    Removing Calcium Ions from Remelt Syrup with Rosin-Based Macroporous Cationic Resin

    No full text
    Mineral ions (mainly calcium ions) from sugarcane juice can be trapped inside the heating tubes of evaporators and vacuum boiling pans, and calcium ions are precipitated. Consequently, sugar productivity and yield are negatively affected. Calcium ions can be removed from sugarcane juice using adsorption. This paper described the experimental condition for the batch adsorption performance of rosin-based macroporous cationic resins (RMCRs) for calcium ions. The kinetics of adsorption was defined by the pseudo-first-order model, and the isotherms of calcium ions followed the Freundlich isotherm model. The maximal monolayer adsorption capacity of calcium ions was 37.05 mg·g−1 at a resin dosage of 4 g·L−1, pH of 7.0, temperature of 75 °C, and contact time of 10 h. It appeared that the adsorption was spontaneous and endothermic based on the thermodynamic parameters. The removal rate of calcium ions in remelt syrup by RMCRs was 90.71%. Calcium ions were effectively removed from loaded RMCRs by 0.1 mol·L−1 of HCl, and the RMCRs could be recycled. The dynamic saturated adsorption capacity of RMCRs for calcium ions in remelt syrup was 37.90 mg·g−1. These results suggest that RMCRs are inexpensive and efficient adsorbents and have potential applications for removing calcium ions in remelt syrup

    Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters

    No full text
    This study investigated the effects of two bacteriocin-producing Lactiplantibacillus plantarum strains on fermentation, bacterial communities, and their functions of alfalfa silage with two dry matter (DM) contents of 355 (moderate DM) and 428 (high DM) g/kg fresh weight. Before ensiling, alfalfa was treated with (1) distilled water (control), (2) the commercial strain L. plantarum MTD/1, (3) bacteriocin-producing L. plantarum ATCC14917, and (4) bacteriocin-producing L. plantarum LP1-4, and ensiled for 3 d, 7 d, 14 d, 60 d, and 90 d, respectively. Application of ATCC14917 promoted lactic acid production in the moderate DM silage at the early fermentation stage (3 d). Silages treated with ATCC14917 and LP1-4 showed lower DM losses and non-protein nitrogen concentrations versus the control or MDT/1-treated silage (p < 0.05). During fermentation, a high proportion of Weissella cibaria was observed in the silages with high DM content from 3 to 60 d of ensiling, and the functions of carbohydrate and amino acid metabolisms of silage bacterial community were decreased by ATCC14917 before 60 d of ensiling. In addition, ATCC14917 also inhibited the growth of Aerococcus and Enterobacter in silage. Therefore, the bacteriocin-producing L. plantarum ATCC14917 has a great potential to improve alfalfa silage quality, nutritive value, and safety as well

    Fluorinated Linear Copolyimide Physically Crosslinked with Novel Fluorinated Hyperbranched Polyimide Containing Large Space Volumes for Enhanced Mechanical Properties and UV-Shielding Application

    No full text
    Fluorinated hyperbranched polyimide (FHBPI), a spherical polymer with large space volumes, was developed to enhance fluorinated linear copolyimide (FPI) in terms of mechanical, UV-shielding, and hydrophobic properties via simple blend and thermal imidization methods. FPI possessed superior compatibility with FHBPI, and no obvious phase separation was found. The incorporation of FHBPI led to the formation of physical crosslinked network between FPI and FHBPI, which markedly improved the mechanical properties of the FPI, resulting in maximum enhancement of 83% in tensile strength from 71.7 Mpa of the pure FPI to 131.4 Mpa of the FPI/FHBPI composite film containing 15 wt % of FHBPI. The introduction of FHBPI also changed the surface properties of composites from hydrophilicity to hydrophobicity, which endowed them with outstanding dielectric stability. Meanwhile, the thin FPI/FHBPI composites kept the high transparency in the visible spectrum, simultaneously showing enhanced UV-shielding properties and lifetimes under intense UV ray. This was attributed to the newly formed charge transfer complex (CTC) between FHBPI and FPI. Moreover, the FPI/FHBPI composites possessed preeminent thermal properties. The properties, mentioned above, gave the composites enormous potential for use as UV-shielding coatings in an environment filled with high temperatures and strong ultraviolet rays

    Effects of antioxidant-rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats

    No full text
    Abstract Background Milk synthesis in lactating animals demands high energy metabolism, which results in an increased production of reactive oxygen metabolites (ROM) causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress (OS) on the animals. To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation, a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum. Methods Twenty-four Guanzhong dairy goats (38.1 ± 1.20 kg) were randomly assigned to two dietary treatments: one containing silage inoculated with L. plantarum MTD/1 (RSMTD-1), and the other containing silage inoculated with high antioxidant activity L. plantarum 24-7 (ES24-7). Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1. The ES24-7 diet elevated the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in milk, serum, and feces of lactating goats (with the exception of T-AOC in milk). Additionally, the diet containing ES24-7 inoculated silage enhanced casein yield, milk free fatty acid (FFA) content, and vitamin A level in the goats’ milk. Furthermore, an increase of immunoglobulin (Ig)A, IgG, IgM, interleukin (IL)-4, and IL-10 concentrations were observed, coupled with a reduction in IL-1β, IL-2, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α concentrations in the serum of lactating goats fed ES24-7. Higher concentrations of total volatile fatty acid (VFA), acetate, and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage. Moreover, the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2 (NFE2L2), beta-carotene oxygenase 1 (BCO1), SOD1, SOD2, SOD3, GPX2, CAT, glutathione-disulfide reductase (GSR), and heme oxygenase 1 (HMOX1) genes in the mammary gland, while decreased the levels of NADPH oxidase 4 (NOX4), TNF, and interferon gamma (IFNG). Conclusions These findings indicated that feeding L. plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland
    corecore