2,975 research outputs found
Chiral expansion of the decay width
A chiral field theory of mesons has been applied to study the contribution of
the current quark masses to the decay width at
the next leading order. enhancement has been predicted and there is no
new parameter.Comment: 9 page
Dirac Fermion in Strongly-Bound Graphene Systems
It is highly desirable to integrate graphene into existing semiconductor
technology, where the combined system is thermodynamically stable yet maintain
a Dirac cone at the Fermi level. Firstprinciples calculations reveal that a
certain transition metal (TM) intercalated graphene/SiC(0001), such as the
strongly-bound graphene/intercalated-Mn/SiC, could be such a system. Different
from free-standing graphene, the hybridization between graphene and Mn/SiC
leads to the formation of a dispersive Dirac cone of primarily TM d characters.
The corresponding Dirac spectrum is still isotropic, and the transport behavior
is nearly identical to that of free-standing graphene for a bias as large as
0.6 V, except that the Fermi velocity is half that of graphene. A simple model
Hamiltonian is developed to qualitatively account for the physics of the
transfer of the Dirac cone from a dispersive system (e.g., graphene) to an
originally non-dispersive system (e.g., TM).Comment: Apr 25th, 2012 submitte
Testing Microfluidic Fully Programmable Valve Arrays (FPVAs)
Fully Programmable Valve Array (FPVA) has emerged as a new architecture for
the next-generation flow-based microfluidic biochips. This 2D-array consists of
regularly-arranged valves, which can be dynamically configured by users to
realize microfluidic devices of different shapes and sizes as well as
interconnections. Additionally, the regularity of the underlying structure
renders FPVAs easier to integrate on a tiny chip. However, these arrays may
suffer from various manufacturing defects such as blockage and leakage in
control and flow channels. Unfortunately, no efficient method is yet known for
testing such a general-purpose architecture. In this paper, we present a novel
formulation using the concept of flow paths and cut-sets, and describe an
ILP-based hierarchical strategy for generating compact test sets that can
detect multiple faults in FPVAs. Simulation results demonstrate the efficacy of
the proposed method in detecting manufacturing faults with only a small number
of test vectors.Comment: Design, Automation and Test in Europe (DATE), March 201
decays
Effective chiral theory of mesons is applied to study the four decay modes of
. Theoretical values of the branching ratios are in
agreement with the data. The theory predicts that the resonance plays a
dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur
Tau mesonic decays and strong anomaly of PCAC
Strong anomaly of the PCAC is found in and
in the chiral limit. It originates in WZW anomaly. Theoretical
result of agrees with data well and the
measurement of will confirm the strong anomaly
of PCAC. The strong anomaly of PCAC is studied.Comment: 27 page
Suppressing nano-scale stick-slip motion by feedback
When a micro cantilever with a nano-scale tip is manipulated on a substrate
with atomic-scale roughness, the periodic lateral frictional force and
stochastic fluctuations may induce stick-slip motion of the cantilever tip,
which greatly decreases the precision of the nano manipulation. This unwanted
motion cannot be reduced by open-loop control especially when there exist
parameter uncertainties in the system model, and thus needs to introduce
feedback control. However, real-time feedback cannot be realized by the
existing virtual reality virtual feedback techniques based on the position
sensing capacity of the atomic force microscopy (AFM). To solve this problem,
we propose a new method to design real-time feedback control based on the force
sensing approach to compensate for the disturbances and thus reduce the
stick-slip motion of the cantilever tip. Theoretical analysis and numerical
simulations show that the controlled motion of the cantilever tip tracks the
desired trajectory with much higher precision. Further investigation shows that
our proposal is robust under various parameter uncertainties. Our study opens
up new perspectives of real-time nano manipulation.Comment: 8 pages, 10 figure
Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts.
Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and β2-adrenergic receptor (β2AR) in the heart. The IR/β2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the β2AR, which promotes β2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of β2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated β2AR-Gi signaling effectively attenuates cAMP/PKA activity after β-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair βAR-regulated cardiac contractility. This β2AR-dependent IR and βAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states
- …