2,947 research outputs found

    Chiral expansion of the π0γγ\pi^0\rightarrow\gamma\gamma decay width

    Full text link
    A chiral field theory of mesons has been applied to study the contribution of the current quark masses to the π0γγ\pi^0\rightarrow\gamma\gamma decay width at the next leading order. 2%2\% enhancement has been predicted and there is no new parameter.Comment: 9 page

    Dirac Fermion in Strongly-Bound Graphene Systems

    Get PDF
    It is highly desirable to integrate graphene into existing semiconductor technology, where the combined system is thermodynamically stable yet maintain a Dirac cone at the Fermi level. Firstprinciples calculations reveal that a certain transition metal (TM) intercalated graphene/SiC(0001), such as the strongly-bound graphene/intercalated-Mn/SiC, could be such a system. Different from free-standing graphene, the hybridization between graphene and Mn/SiC leads to the formation of a dispersive Dirac cone of primarily TM d characters. The corresponding Dirac spectrum is still isotropic, and the transport behavior is nearly identical to that of free-standing graphene for a bias as large as 0.6 V, except that the Fermi velocity is half that of graphene. A simple model Hamiltonian is developed to qualitatively account for the physics of the transfer of the Dirac cone from a dispersive system (e.g., graphene) to an originally non-dispersive system (e.g., TM).Comment: Apr 25th, 2012 submitte

    Testing Microfluidic Fully Programmable Valve Arrays (FPVAs)

    Full text link
    Fully Programmable Valve Array (FPVA) has emerged as a new architecture for the next-generation flow-based microfluidic biochips. This 2D-array consists of regularly-arranged valves, which can be dynamically configured by users to realize microfluidic devices of different shapes and sizes as well as interconnections. Additionally, the regularity of the underlying structure renders FPVAs easier to integrate on a tiny chip. However, these arrays may suffer from various manufacturing defects such as blockage and leakage in control and flow channels. Unfortunately, no efficient method is yet known for testing such a general-purpose architecture. In this paper, we present a novel formulation using the concept of flow paths and cut-sets, and describe an ILP-based hierarchical strategy for generating compact test sets that can detect multiple faults in FPVAs. Simulation results demonstrate the efficacy of the proposed method in detecting manufacturing faults with only a small number of test vectors.Comment: Design, Automation and Test in Europe (DATE), March 201

    τρππν\tau\to\rho\pi\pi\nu decays

    Full text link
    Effective chiral theory of mesons is applied to study the four decay modes of τρππν\tau\to\rho\pi\pi\nu. Theoretical values of the branching ratios are in agreement with the data. The theory predicts that the a1a_{1} resonance plays a dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur

    Tau mesonic decays and strong anomaly of PCAC

    Full text link
    Strong anomaly of the PCAC is found in τωππν\tau\rightarrow\omega \pi\pi\nu and ωρν\omega\rho\nu in the chiral limit. It originates in WZW anomaly. Theoretical result of τωππν\tau\rightarrow\omega\pi\pi\nu agrees with data well and the measurement of τωρν\tau\rightarrow\omega\rho\nu will confirm the strong anomaly of PCAC. The strong anomaly of PCAC is studied.Comment: 27 page

    Suppressing nano-scale stick-slip motion by feedback

    Full text link
    When a micro cantilever with a nano-scale tip is manipulated on a substrate with atomic-scale roughness, the periodic lateral frictional force and stochastic fluctuations may induce stick-slip motion of the cantilever tip, which greatly decreases the precision of the nano manipulation. This unwanted motion cannot be reduced by open-loop control especially when there exist parameter uncertainties in the system model, and thus needs to introduce feedback control. However, real-time feedback cannot be realized by the existing virtual reality virtual feedback techniques based on the position sensing capacity of the atomic force microscopy (AFM). To solve this problem, we propose a new method to design real-time feedback control based on the force sensing approach to compensate for the disturbances and thus reduce the stick-slip motion of the cantilever tip. Theoretical analysis and numerical simulations show that the controlled motion of the cantilever tip tracks the desired trajectory with much higher precision. Further investigation shows that our proposal is robust under various parameter uncertainties. Our study opens up new perspectives of real-time nano manipulation.Comment: 8 pages, 10 figure

    Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts.

    Get PDF
    Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and β2-adrenergic receptor (β2AR) in the heart. The IR/β2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the β2AR, which promotes β2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of β2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated β2AR-Gi signaling effectively attenuates cAMP/PKA activity after β-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair βAR-regulated cardiac contractility. This β2AR-dependent IR and βAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states
    corecore