802 research outputs found

    Cerebrospinal Fluid Cortisol and Dehydroepiandrosterone Sulfate, Alzheimer's Disease Pathology, and Cognitive Decline.

    Get PDF
    Elevated cortisol levels have been reported in Alzheimer's disease (AD) and may accelerate the development of brain pathology and cognitive decline. Dehydroepiandrosterone sulfate (DHEAS) has anti-glucocorticoid effects and it may be involved in the AD pathophysiology. To investigate associations of cerebrospinal fluid (CSF) cortisol and DHEAS levels with (1) cognitive performance at baseline; (2) CSF biomarkers of amyloid pathology (as assessed by CSF Aβ levels), neuronal injury (as assessed by CSF tau), and tau hyperphosphorylation (as assessed by CSF p-tau); (3) regional brain volumes; and (4) clinical disease progression. Individuals between 49 and 88 years (n = 145) with mild cognitive impairment or dementia or with normal cognition were included. Clinical scores, AD biomarkers, brain MRI volumetry along with CSF cortisol and DHEAS were obtained at baseline. Cognitive and functional performance was re-assessed at 18 and 36 months from baseline. We also assessed the following covariates: apolipoprotein E (APOE) genotype, BMI, and education. We used linear regression and mixed models to address associations of interest. Higher CSF cortisol was associated with poorer global cognitive performance and higher disease severity at baseline. Cortisol and cortisol/DHEAS ratio were positively associated with tau and p-tau CSF levels, and negatively associated with the amygdala and insula volumes at baseline. Higher CSF cortisol predicted more pronounced cognitive decline and clinical disease progression over 36 months. Higher CSF DHEAS predicted more pronounced disease progression over 36 months. Increased cortisol in the CNS is associated with tau pathology and neurodegeneration, and with decreased insula and amygdala volume. Both CSF cortisol and DHEAS levels predict faster clinical disease progression. These results have implications for the identification of patients at risk of rapid decline as well as for the development of interventions targeting both neurodegeneration and clinical manifestations of AD

    Plasma neurofilament light and phosphorylated tau 181 as biomarkers of Alzheimer's disease pathology and clinical disease progression.

    Get PDF
    To assess the performance of plasma neurofilament light (NfL) and phosphorylated tau 181 (p-tau181) to inform about cerebral Alzheimer's disease (AD) pathology and predict clinical progression in a memory clinic setting. Plasma NfL and p-tau181, along with established cerebrospinal fluid (CSF) biomarkers of AD pathology, were measured in participants with normal cognition (CN) and memory clinic patients with cognitive impairment (mild cognitive impairment and dementia, CI). Clinical and neuropsychological assessments were performed at inclusion and follow-up visits at 18 and 36 months. Multivariate analysis assessed associations of plasma NfL and p-tau181 levels with AD, single CSF biomarkers, hippocampal volume, and clinical measures of disease progression. Plasma NfL levels were higher in CN participants with an AD CSF profile (defined by a CSF p-tau181/Aβ <sub>1-42</sub> > 0.0779) as compared with CN non-AD, while p-tau181 plasma levels were higher in CI patients with AD. Plasma NfL levels correlated with CSF tau and p-tau181 in CN, and with CSF tau in CI patients. Plasma p-tau181 correlated with CSF p-tau181 in CN and with CSF tau, p-tau181, Aβ <sub>1-42</sub> , and Aβ <sub>1-42</sub> /Aβ <sub>1-40</sub> in CI participants. Compared with a reference model, adding plasma p-tau181 improved the prediction of AD in CI patients while adding NfL did not. Adding p-tau181, but not NfL levels, to a reference model improved prediction of cognitive decline in CI participants. Plasma NfL indicates neurodegeneration while plasma p-tau181 levels can serve as a biomarker of cerebral AD pathology and cognitive decline. Their predictive performance depends on the presence of cognitive impairment

    Plasma neurofilament light and phosphorylated tau 181 as biomarkers of Alzheimer's disease pathology and clinical disease progression.

    Get PDF
    BACKGROUND: To assess the performance of plasma neurofilament light (NfL) and phosphorylated tau 181 (p-tau181) to inform about cerebral Alzheimer's disease (AD) pathology and predict clinical progression in a memory clinic setting. METHODS: Plasma NfL and p-tau181, along with established cerebrospinal fluid (CSF) biomarkers of AD pathology, were measured in participants with normal cognition (CN) and memory clinic patients with cognitive impairment (mild cognitive impairment and dementia, CI). Clinical and neuropsychological assessments were performed at inclusion and follow-up visits at 18 and 36 months. Multivariate analysis assessed associations of plasma NfL and p-tau181 levels with AD, single CSF biomarkers, hippocampal volume, and clinical measures of disease progression. RESULTS: Plasma NfL levels were higher in CN participants with an AD CSF profile (defined by a CSF p-tau181/Aβ1-42 > 0.0779) as compared with CN non-AD, while p-tau181 plasma levels were higher in CI patients with AD. Plasma NfL levels correlated with CSF tau and p-tau181 in CN, and with CSF tau in CI patients. Plasma p-tau181 correlated with CSF p-tau181 in CN and with CSF tau, p-tau181, Aβ1-42, and Aβ1-42/Aβ1-40 in CI participants. Compared with a reference model, adding plasma p-tau181 improved the prediction of AD in CI patients while adding NfL did not. Adding p-tau181, but not NfL levels, to a reference model improved prediction of cognitive decline in CI participants. CONCLUSION: Plasma NfL indicates neurodegeneration while plasma p-tau181 levels can serve as a biomarker of cerebral AD pathology and cognitive decline. Their predictive performance depends on the presence of cognitive impairment

    Erlangen Score Predicts Cognitive and Neuroimaging Progression in Mild Cognitive Impairment Stage of Alzheimer's Disease

    Get PDF
    Background: To alleviate the interpretation of the core Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers, amyloid β1–42 (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau), the Erlangen Score (ES) interpretation algorithm has been proposed. // Objective: In this study, we aim to assess the predictive properties of the ES algorithm on cognitive and neuroimaging outcomes in mild cognitive impairment (MCI). // Methods: All MCI subjects with an available baseline CSF sample from ADNI-1 were included (n = 193), and assigned an ES between 0 and 4 based on their baseline CSF biomarker profile. Structural magnetic resonance imaging brain scans and MMSE and ADAS-Cog scores were collected at up to 7 times in follow-up examinations. // Results: We observed strong and significant correlations between the ES at baseline and neuroimaging and cognitive results with patients with neurochemically probable AD (ES = 4) progressing significantly (p≤0.01) faster than those with a neurochemically improbable AD (ES = 0 or 1), and the subjects with neurochemically possible AD (ES = 2 or 3) in-between these two groups. // Conclusion: This study further demonstrates the utility of the ES algorithm as a as a tool in predicting cognitive and imaging progression in MCI patients

    Cardiac Surgery is Associated with Biomarker Evidence of Neuronal Damage

    Get PDF
    BACKGROUND: Anesthesia and surgery is commonly associated with central nervous system sequelae and cognitive symptoms, which may be caused by neuronal injury. Neuronal injury can be monitored by plasma concentrations of the neuronal biomarkers tau and neurofilament light protein (NFL). Currently, there are no studies examining whether neuronal injury varies between surgical procedures. OBJECTIVE: Our aim was to investigate if neuronal damage is more frequent after cardiac than after otolaryngeal surgery, as estimated by tau and NFL concentrations in plasma. METHODS: Blood samples were drawn before, during, and after surgery and concentrations of tau, NFL, Aβ40, and Aβ42 were measured in 25 patients undergoing cardiac surgery (9 off-pump and 16 on-pump) and 26 patients undergoing otolaryngeal surgery. RESULTS: Tau increased during surgery (1752%, p = 0.0001) and NFL rose seven days post-surgery (1090%, p < 0.0001) in patients undergoing cardiac surgery; even more in patients on-pump than off-pump. No changes were observed in patients undergoing otolaryngeal surgery and only minor fluctuations were observed for Aβ40 and Aβ42. CONCLUSION: Cardiac surgery is associated with neuronal injury, which is aggravated by extracorporeal circulation. Analyses of NFL and tau in blood may guide development of surgical procedures to minimize neuronal damage, and may also be used in longitudinal clinical studies to assess the relationship of surgery with future neurocognitive impairment or dementia

    Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease

    Get PDF
    BACKGROUND: A growing body of evidence suggests that the plasma concentration of the neurofilament light chain (NfL) might be considered a plasma biomarker for the screening of neurodegeneration in Alzheimer’s disease (AD). METHODS: With a single molecule array method (Simoa, Quanterix), plasma NfL concentrations were measured in 99 subjects with AD at the stage of mild cognitive impairment (MCI-AD; n = 25) or at the stage of early dementia (ADD; n = 33), and in nondemented controls (n = 41); in all patients, the clinical diagnoses were in accordance with the results of the four core cerebrospinal fluid (CSF) biomarkers (amyloid β (Aβ)1–42, Aβ42/40, Tau, and pTau181), interpreted according to the Erlangen Score algorithm. The influence of preanalytical storage procedures on the NfL in plasma was tested on samples exposed to six different conditions. RESULTS: NfL concentrations significantly increased in the samples exposed to more than one freezing/thawing cycle, and in those stored for 5 days at room temperature or at 4 °C. Compared with the control group of nondemented subjects (22.0 ± 12.4 pg/mL), the unadjusted plasma NfL concentration was highly significantly higher in the MCI-AD group (38.1 ± 15.9 pg/mL, p < 0.005) and even further elevated in the ADD group (49.1 ± 28.4 pg/mL; p < 0.001). A significant association between NfL and age (ρ = 0.65, p < 0.001) was observed; after correcting for age, the difference in NfL concentrations between AD and controls remained significant (p = 0.044). At the cutoff value of 25.7 pg/mL, unconditional sensitivity, specificity, and accuracy were 0.84, 0.78, and 0.82, respectively. Unadjusted correlation between plasma NfL and Mini Mental State Examination (MMSE) across all patients was moderate but significant (r = −0.49, p < 0.001). We observed an overall significant correlation between plasma NfL and the CSF biomarkers, but this correlation was not observed within the diagnostic groups. CONCLUSIONS: This study confirms increased concentrations of plasma NfL in patients with Alzheimer’s disease compared with nondemented controls
    corecore