29 research outputs found

    ABA and Oxygen Crosstalk During Seed Development

    Get PDF
    No abstract availabl

    Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    Get PDF
    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area

    Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    Get PDF
    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. ~ Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area

    Silica-Titania Composite (STC)'s Performance in the Photocatalytic Oxidation of Polar VOCs

    Get PDF
    The objective of this paper is to determine the performance of a Silica-Titania Composite (STC) in the photocatalytic oxidation (PCO) of polar VOCs for potential applications in trace contaminant control within space habitats such as the ISS and CEV Orion. Tests were carried out in a bench scale STC-packed annular reactor under continuous illumination by either a UV-C germicidal lamp(lambda (sub max) = 254 nm) or UV-A fluorescent BLB (lambda(sub max) = 365 nm) for the removal of ethanol (a predominant polar VOC in the ISS cabin). The STC's performance was evaluated in terms of the ethanol mineralization rate, mineralization efficiency, and the extent of its oxidation intermediate (acetaldehyde) formation in response to the type of light source (photon energy and photon flux) and relative humidity (RH) implemented. Results demonstrated that acetaldehyde was the only quantifiable intermediate in the effluent under UV illumination, but was not found in the dark adsorption experiments. The mineralization rate increased with an increase in photon energy (UV-C greater than UV-A), even though both lamps were adjusted to emit the same incident photon flux, and also increased with increasing photon flux. However, photonic efficiency decreased as the photon flux increased. More importantly, a higher photon flux gave rise to a lower effluent acetaldehyde concentration. The effect of RH on PCO was complex and intriguing because it affected both physical adsorption and photocatalytic oxidation. In general, increasing RH caused a decrease in adsorption capacity for ethanol and reduced the mineralization efficiency with a concomitant higher acetaldehyde evolution rate. The effect of RH was less profound than that of photon flux

    Sustainability of the Catalytic Activity of a Silica-Titania Composite (STC) for Long-Term Indoor Air Quality Control

    Get PDF
    TiO2-assisted photocatalytic oxidation (PCO) is an emerging technology for indoor air quality control and is also being evaluated as an alternative trace contaminant control technology for crew habitats in space exploration. Though there exists a vast range of literature on the development of photocatalysts and associated reactor systems, including catalyst performance and performance-influencing factors, the critical question of whether photocatalysts can sustain their initial catalytic activity over an extended period of operation has not been adequately addressed. For a catalyst to effectively serve as an air quality control product, it must be rugged enough to withstand exposure to a multitude of low concentration volatile organic compounds (VOCs) over long periods of time with minimal loss of activity. The objective of this study was to determine the functional lifetime of a promising photocatalyst - the silica-titania composite (STC) from Sol Gel Solutions, LLC in a real-world scenario. A bench-scale STC-packed annular reactor under continuous irradiation by a UV-A fluorescent black-light blue lamp ((lambda)max = 365 nm) was exposed to laboratory air continuously at an apparent contact time of 0.27 sand challenged with a known concentration of ethanol periodically to assess any changes in catalytic activity. Laboratory air was also episodically spiked with halocarbons (e.g., octafluoropropane), organosulfur compounds (e.g., sulfur hexafluoride), and organosilicons (e.g., siloxanes) to simulate accidental releases or leaks of such VOCs. Total organic carbon (TOC) loading and contaminant profiles of the laboratory air were also monitored. Changes in STC photocatalytic performance were evaluated using the ethanol mineralization rate, mineralization efficiency, and oxidation intermediate (acetaldehyde) formation. Results provide insights to any potential catalyst poisoning by trace halocarbons and organosulfur compounds

    Flavonoid Oxidation by the Radical Generator AIBN: A Unified Mechanism for Quercetin Radical Scavenging

    Get PDF
    Four oxidized flavonoid derivatives generated from reacting quercetin (a pentahydroxylated flavone) with the peroxyl radical generator 2,2′-azobis-isobutyronitrile (AIBN) were isolated by chromatographic methods and identified by NMR and MS analyses. Compounds included 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (2); 1,3,11a-trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-4-on-2-yl)-5a-(3,4-dihydroxyphenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one (3); 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoic acid (4); and methyl 3,4-dihydroxyphenylglyoxylate (5). Product ratios under different hydrogen ion concentrations and external nucleophiles revealed that two of the products, namely the substituted benzofuranone (2) and the depside (4), are generated from a common carbocation intermediate. Indirect evidence for the operation of a cyclic concerted mechanism in the formation of the dimeric produc

    The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Get PDF
    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy

    Silica-Titania Composite (Stc)\u27S Performance In The Photocatalytic Oxidation Of Polar Vocs

    No full text
    The objective of this paper is to determine the performance of a Silica-Titania Composite (STC) in the photocatalytic oxidation (PCO) of polar VOCs for potential applications in trace contaminant control within space habitats such as the ISS and CEV Orion. Tests were carried out in a bench scale, STC-packed annular reactor under continuous irradiation by either a UV-C germicidal lamp (λmax=254 nm) or UV-A fluorescent black-light blue lamp (λmax = 365 nm) for the removal of ethanol (a predominant polar VOC in the ISS cabin). The STC\u27s performance was evaluated in terms of the ethanol mineralization rate, mineralization efficiency, and the extent of its oxidation intermediate (acetaldehyde) formation in response to the type of light source (photon energy and photon flux) and relative humidity (RH) implemented. Results demonstrated that acetaldehyde was the only quantifiable intermediate in the effluent under UV illumination but not found in the dark adsorption experiments. The mineralization rate increased with an increase in photon energy (UV-C \u3e UV-A) at the same incident photon flux as well as increased with increasing photon flux. However, photonic efficiency (or reaction quantum yield) decreased as the photon flux increased. More importantly, a higher photon flux gave rise to a lower effluent acetaldehyde concentration. The effect of RH on PCO was complex and intriguing because it affected both physical adsorption and photocatalytic oxidation. In general, increasing RH caused a decrease in adsorption capacity for ethanol and reduced the mineralization efficiency with a concomitant higher acetaldehyde evolution rate. The effect of RH was less profound than that of photon flux. © 2011 by the American Institute of Aeronautics and Astronautics. Inc
    corecore