195 research outputs found

    Acoustic transducer apparatus with reduced thermal conduction

    Get PDF
    A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn

    Plasma heating for containerless and microgravity materials processing

    Get PDF
    A method for plasma heating of levitated samples to be used in containerless microgravity processing is disclosed. A sample is levitated by electrostatic, electromagnetic, aerodynamic, or acoustic systems, as is appropriate for the physical properties of the particular sample. The sample is heated by a plasma torch at atmospheric pressure. A ground plate is provided to help direct the plasma towards the sample. In addition, Helmholtz coils are provided to produce a magnetic field that can be used to spiral the plasma around the sample. The plasma heating system is oriented such that it does not interfere with the levitation system

    Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration.

    Get PDF
    OBJECTIVE: To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD). METHODS: Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral. RESULTS: We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003). CONCLUSIONS: The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD

    APOE ε4 is associated with disproportionate progressive hippocampal atrophy in AD.

    Get PDF
    OBJECTIVES: To investigate whether APOE ε4 carriers have higher hippocampal atrophy rates than non-carriers in Alzheimer's disease (AD), mild cognitive impairment (MCI) and controls, and if so, whether higher hippocampal atrophy rates are still observed after adjusting for concurrent whole-brain atrophy rates. METHODS: MRI scans from all available visits in ADNI (148 AD, 307 MCI, 167 controls) were used. MCI subjects were divided into "progressors" (MCI-P) if diagnosed with AD within 36 months or "stable" (MCI-S) if a diagnosis of MCI was maintained. A joint multi-level mixed-effect linear regression model was used to analyse the effect of ε4 carrier-status on hippocampal and whole-brain atrophy rates, adjusting for age, gender, MMSE and brain-to-intracranial volume ratio. The difference in hippocampal rates between ε4 carriers and non-carriers after adjustment for concurrent whole-brain atrophy rate was then calculated. RESULTS: Mean adjusted hippocampal atrophy rates in ε4 carriers were significantly higher in AD, MCI-P and MCI-S (p≤0.011, all tests) compared with ε4 non-carriers. After adjustment for whole-brain atrophy rate, the difference in mean adjusted hippocampal atrophy rate between ε4 carriers and non-carriers was reduced but remained statistically significant in AD and MCI-P. CONCLUSIONS: These results suggest that the APOE ε4 allele drives atrophy to the medial-temporal lobe region in AD

    A fast radio burst localized at detection to a galactic disk using very long baseline interferometry

    Full text link
    Fast radio bursts (FRBs) are millisecond-duration, luminous radio transients of extragalactic origin. These events have been used to trace the baryonic structure of the Universe using their dispersion measure (DM) assuming that the contribution from host galaxies can be reliably estimated. However, contributions from the immediate environment of an FRB may dominate the observed DM, thus making redshift estimates challenging without a robust host galaxy association. Furthermore, while at least one Galactic burst has been associated with a magnetar, other localized FRBs argue against magnetars as the sole progenitor model. Precise localization within the host galaxy can discriminate between progenitor models, a major goal of the field. Until now, localizations on this spatial scale have only been carried out in follow-up observations of repeating sources. Here we demonstrate the localization of FRB 20210603A with very long baseline interferometry (VLBI) on two baselines, using data collected only at the time of detection. We localize the burst to SDSS J004105.82+211331.9, an edge-on galaxy at z0.177z\approx 0.177, and detect recent star formation in the kiloparsec-scale vicinity of the burst. The edge-on inclination of the host galaxy allows for a unique comparison between the line of sight towards the FRB and lines of sight towards known Galactic pulsars. The DM, Faraday rotation measure (RM), and scattering suggest a progenitor coincident with the host galactic plane, strengthening the link between the environment of FRB 20210603A and the disk of its host galaxy. Single-pulse VLBI localizations of FRBs to within their host galaxies, following the one presented here, will further constrain the origins and host environments of one-off FRBs.Comment: 40 pages, 13 figures, submitted. Fixed typo in abstrac

    Axonal Regeneration and Neuronal Function Are Preserved in Motor Neurons Lacking ß-Actin In Vivo

    Get PDF
    The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA), suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO) to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo

    CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources

    Full text link
    We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events co-located on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from \sim220 pc cm3^{-3} to \sim1700 pc cm3^{-3}, and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction and find that it tends to an equilibrium of 2.62.6+2.92.6_{-2.6}^{+2.9}% over our exposure thus far. We also report on 14 more sources which are promising repeating FRB candidates and which merit follow-up observations for confirmation.Comment: Submitted to ApJ. Comments are welcome and follow-up observations are encouraged
    corecore