48 research outputs found

    Redox control of non-shivering thermogenesis

    Get PDF
    Background: Thermogenic adipocytes reorganize their metabolism during cold exposure. Metabolic reprogramming requires readily available bioenergetics substrates, such as glucose and fatty acids, to increase mitochondrial respiration and produce heat via the uncoupling protein 1 (UCP1). This condition generates a finely-tuned production of mitochondrial reactive oxygen species (ROS) that support non-shivering thermogenesis.Scope of review: Herein, the findings underlining the mechanisms that regulate ROS production and control of the adaptive responses tuning thermogenesis in adipocytes are described. Furthermore, this review describes the metabolic responses to substrate availability and the consequence of mitochondrial failure to switch fuel oxidation in response to changes in nutrient availability. A framework to control mitochondrial ROS threshold to maximize non-shivering thermogenesis in adipocytes is provided.Major conclusions: Thermogenesis synchronizes fuel oxidation with an acute and transient increase of mitochondrial ROS that promotes the activation of redox-sensitive thermogenic signaling cascade and UCP1. However, an overload of substrate flux to mitochondria causes a massive and damaging mitochondrial ROS production that affects mitochondrial flexibility. Finding novel thermogenic redox targets and manipulating ROS concentration in adipocytes appears to be a promising avenue of research for improving thermogenesis and counteracting metabolic diseases. (C) 2019 The Author. Published by Elsevier GmbH

    An Overview of the Ferroptosis Hallmarks in Friedreich's Ataxia

    Get PDF
    Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by early mortality due to hypertrophic cardiomyopathy. FRDA is caused by reduced levels of frataxin (FXN), a mitochondrial protein involved in the synthesis of iron-sulphur clusters, leading to iron accumulation at the mitochondrial level, uncontrolled production of reactive oxygen species and lipid peroxidation. These features are also common to ferroptosis, an iron-mediated type of cell death triggered by accumulation of lipoperoxides with distinct morphological and molecular characteristics with respect to other known cell deaths

    Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis

    Get PDF
    Non-enzymatic antioxidant capacity (NEAC) represents a sensitive biomarker measuring the in vivo antioxidant potential of vegetable foods. To evaluate the effectiveness of plant-derived foods and beverages on the plasma non-enzymatic antioxidant system, we analysed all literature published upto May 2010. Data were extracted by two authors independently, and the effect size was summarised using standardised mean differences by a random-effects model. For the analysis, eighty-eight studies were included, reporting a total number of 122 interventions and involving 2890 subjects. There was overall evidence of the effectiveness of fruit, vegetables, dietary patterns based on plant foods, red wine and tea in increasing plasma NEAC. No changes were found for chocolate and fruit juices. We observed an overall effect size three times higher in subjects with risk factors when compared with healthy subjects. Total radical-trapping antioxidant parameter, oxygen radical absorbance capacity and ferric-reducing antioxidant power methods showed a similar increase in plasma NEAC following dietary supplementation, whereas Trolox equivalent antioxidant capacity did not respond to dietary supplementation. Data from the present meta-analysis show that plant-derived foods represent an effective strategy to enhance an endogenous antioxidant network in humans. This is particularly evident in the presence of oxidative stress-related risk factors

    Effect of ingestion of dark chocolates with similar lipid composition and different cocoa content on antioxidant and lipid status in healthy humans

    Get PDF
    The association between in vitro antioxidant capacity of dark chocolates with different cocoa percentage and the in vivo response on antioxidant status was investigated. In a randomized crossover design, 15 healthy volunteer consumed 100 g of high antioxidants dark chocolate (HADC) or dark chocolate (DC). In vitro, HADC displayed a higher Total Antioxidant Capacity (TAC) than DC. In vivo, plasma TAC significantly peaked 2 h after ingestion of both chocolates. TAC levels went back to zero 5 h after DC ingestion whilst levels remained significantly higher for HADC. HADC induced a significantly higher urinary TAC in the 5-12 h interval time than DC. No change was detected in urinary excretion of F2-isoprostanes. Plasma thiols and triacylglycerol (TG) levels significantly increased for both chocolate with a peak at 2 h remaining significantly higher for DC after 5 h respect to HADC. Results provide evidence of a direct association between antioxidant content of chocolate and the extent of in vivo response on plasma antioxidant capacity. (C) 2011 Elsevier Ltd. All rights reserved

    Intermittent fasting applied in combination with rotenone treatment exacerbates dopamine neurons degeneration in mice

    Get PDF
    Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson\u2019s disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (a-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition

    Low Sulfur Amino Acid, High Polyunsaturated Fatty Acid Diet Inhibits Breast Cancer Growth

    Get PDF
    Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability. We used in vitro models of BC (MCF7 and MDA-MB-231) that were maintained with a low amount of sulfur amino acids (SAAs) and a high amount of oxidizable polyunsatured fatty acids (PUFAs). Treatment with anti-apoptotic, anti-ferroptotic and antioxidant drugs were used to determine the modality of cell death. We reproduced these conditions in vivo by feeding BC-bearing mice with a diet poor in proteins and SAAs and rich in PUFAs (LSAA/HPUFA). Western blot analysis, qPCR and histological analyses were used to assess the anti-cancer effects and the molecular pathways involved. We found that BC cells underwent oxidative damage to DNA and proteins and both apoptosis and ferroptosis were induced. Along with caspases-mediated PARP1 cleavage, we found a lowering of the GSH-GPX4 system and an increase of lipid peroxides. A LSAA/HPUFA diet reduced tumor mass and its vascularization and immune cell infiltration, and induced apoptosis and ferroptotic hallmarks. Furthermore, mitochondrial mass was found to be increased, and the buffering of mitochondrial reactive oxygen species limited GPX4 reduction and DNA damage. Our results suggest that administration of custom diets, targeting the dependency of cancer cells on certain nutrients, can represent a promising complementary option for anti-cancer therapy

    Molecular and histological traits of reduced lysosomal acid lipase activity in the fatty liver

    Get PDF
    Recent studies demonstrated reduced blood lysosomal acid lipase (LAL) activity in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to verify hepatic LAL protein content and activity in in vitro and in vivo models of fat overload and in NAFLD patients. LAL protein content and activity were firstly evaluated in Huh7 cells exposed to high-glucose/high-lipid (HGHL) medium and in the liver of C57BL/6 mice fed with high-fat diet (HFD) for 4 and 8 months. LAL protein was also evaluated by immunohistochemistry in liver biopsies from 87 NAFLD patients and 10 controls, and correlated with hepatic histology. Huh7 cells treated with HGHL medium showed a significant reduction of LAL activity, which was consistent with reduced LAL protein levels by western blotting using an antibody towards the N-term of the enzyme. Conversely, antibodies towards the C-term of the enzyme evidenced LAL accumulation, suggesting a post-translational modification that masks the LAL N-term epitope and affects enzymatic activity. Indeed, we found a high rate of ubiquitination and extra-lysosomal localization of LAL protein in cells treated with HGHL medium. Consistent with these findings, inhibition of proteasome triggered dysfunctional LAL accumulation and affected LAL activity. Accumulation of ubiquitinated/dysfunctional LAL was also found in the liver of HFD fed mice. In NAFLD patients, hepatic levels of non-ubiquitinated/functional LAL were lower than in controls and inversely correlated with disease activity and some of the hallmarks of reduced LAL. Fat overload leads to LAL ubiquitination and impairs its function, possibly reducing hepatic fat disposal and promoting NAFLD activity

    Lipocalin-2 promotes adipose-macrophage interactions to shape peripheral and central inflammatory responses in experimental autoimmune encephalomyelitis

    Get PDF
    Objective: Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. Results and methods: We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. Conclusions: Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS

    Hyperbaric exposure and oxidative Stress in occupational activities (HEOxS): the study protocol

    Get PDF
    Background: Hyperbaric exposure (HE) is proven to be a stressor to several mechanisms in living cells. Even if after homeostasis restoration, harmful effects are expected, in particular a presence of free radicals. These latter are the stimulus to negative phenomenon as inflammation or cancer. In Italy, with 7500 km of sea shores, a large quantity of workers is exposed to HE during occupational activities. A deep knowledge of HE and bodily effects is not well defined; hence a multidisciplinary assessment of risk is needed. To detect one or more indicators of HE a research group is organised, under the INAIL sponsorship. The research project focused on the oxidative stress (OxS) and this paper details on the possible protocol to estimate, with a large amount of techniques on several human liquids, the relationship between OxS and HE. Specific attention will be paid to identify confounding factors and their influence. Methods: Blood and urine will be sampled. Several lab techniques will be performed on samples, both targeted, to measure the level of well-known biomarkers, and untargeted. Regard the formers: products of oxidation of DNA and RNA in urine; inflammation and temperature cytokines and protein carbonyles in blood. Untargeted evaluation will be performed for a metabolomics analysis in urine. Confounding factors: temperature, body fat, fitness, allergies and dietary habits. These factors will be assessed, directly or indirectly, prior and after HE. The final scope of the project is to determine one or more indicators that relates to HE in hits twofold nature: depth and duration. Conclusion: The relationship between OxS and HE is not deeply investigated and literature proposes diverging results. The project aims to define the time dependence of biomarkers related to OxS, to rise knowledge in risk assessment in workers exposed to HE
    corecore