17 research outputs found

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Combining Feature Selection Techniques and Neurofuzzy Systems for the Prediction of Total Viable Counts in Beef Fillets Using Multispectral Imaging

    No full text
    In the food industry, quality and safety issues are associated with consumers’ health condition. There is a growing interest in applying various noninvasive sensorial techniques to obtain quickly quality attributes. One of them, hyperspectral/multispectral imaging technique has been extensively used for inspection of various food products. In this paper, a stacking-based ensemble prediction system has been developed for the prediction of total viable counts of microorganisms in beef fillet samples, an essential cause to meat spoilage, utilizing multispectral imaging information. As the selection of important wavelengths from the multispectral imaging system is considered as an essential stage to the prediction scheme, a features fusion approach has been also explored, by combining wavelengths extracted from various feature selection techniques. Ensemble sub-components include two advanced clustering-based neuro-fuzzy network prediction models, one utilizing information from average reflectance values, while the other one from the standard deviation of the pixels’ intensity per wavelength. The performances of neurofuzzy models were compared against established regression algorithms such as multilayer perceptron, support vector machines and partial least squares. Obtained results confirmed the validity of the proposed hypothesis to utilize a combination of feature selection methods with neurofuzzy models in order to assess the microbiological quality of meat products

    Revealing sales trends through data mining

    No full text

    Synthesis and biological studies of c(RGDyK) conjugates of cucurbitacins

    No full text
    Cucurbitacins (CUCUs) are triterpenoids known to display potent cytotoxic effects; however, their clinical application is limited due to poor pharmacokinetics and systemic toxicity. This work focuses on the development of c(RGDyK)-CUCU conjugates for the selective delivery of CUCUs to integrin-overexpressing cancer cells. The activity of the conjugates against various cancer cells was studied. They exhibited a mild cytostatic effect to six cancer cell lines and a cytotoxic effect against integrin-overexpressing MCF-7 and A549 cells. Their chemical and metabolic stability was extensively studied using LC-MS analysis. The conjugates maintained high affinity for αvβ3 integrin receptors. c(RGDyK) conjugation via a PEG linker was beneficial for CUCU-D and the resulting conjugate was approximately three-times more active than the free CUCU-D in MCF7 cells. © 2021 S. Karger AG, Basel

    Silibinin Inhibits HIV-1 Infection by Reducing Cellular Activation and Proliferation

    No full text
    <div><p>Purified silymarin-derived natural products from the milk thistle plant (<em>Silybum marianum</em>) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.</p> </div

    SIL suppresses HIV-1 Infection of TZM-bl cells.

    No full text
    <p><b>A</b>, Cytotoxicity profile of SIL in TZM-bl cells. Cells were infected with LAI, a CXCR4-using virus, or BAL, a CCR5-using virus, at an MOI of 0.05 in the presence of the indicated concentrations of SIL and ATP was measured using the ATPlite kit 48 hours later. The data are representative of 2 (BAL) and 3 (LAI) independent technical repeats. <b>B</b>, Antiviral profile of SIL in TZM-bl cells. Serial dilutions of SIL were tested for inhibition of infection in TZM cells. Following addition of compounds and virus, cells were incubated for 48 hours before luciferase activity was measured. Percent inhibition refers to percent reduction in luciferase activity of SIL versus untreated cultures. Error bars represent standard deviation of 3 independent technical repeats. <b>C</b>, SIL inhibits pseudovirus replication in TZM-bl cells. TZM-bl cells were infected with the indicated viruses in the presence of the indicated concentrations of SIL and luciferase activity was measured 48 hours post-infection. The D013M12 psuedovirus contains a subtype D envelope sequence, while the D769 psuedovirus contains a subtype A envelope sequence. Error bars represent standard deviations of triplicate wells per condition.</p

    SIL inhibits stimulus-induced expansion of CD4+ T cells expressing the HIV co-receptors CXCR4 and CCR5 (panel A) but does not affect the relative frequency of CD4+ T cells expressing co-receptors (panel B).

    No full text
    <p>PBMCs were stimulated with PHA for 3 days prior to exposure to IL-2 and the indicated concentrations of SIL. Twenty-four hours later, cells were stained for CD4, CXCR4, and CCR5 and analyzed by flow cytometry. A, Y-axis represents the concentration of the indicated cell type. The cell concentration is expressed per µl of cell suspension and was determined using counting beads. Panel B shows the percentage of total CD4+ T cells that express one, both, or neither co-receptor.</p

    SIL inhibits activation marker expression on CD4+ T cells.

    No full text
    <p>PBMCs were activated with either SEB (0.5 µg/ml) or PHA (2 µg/ml) for 24 hours, and treated with the indicated concentrations of SIL for 12 hours. Representative flow cytometry dot plots showing expression of HLA-DR (A), CD38 (B), Ki67 (C), and CCR5 (D). Data are representative of 3 HIV-seronegative individuals tested for each marker.</p
    corecore