23,279 research outputs found
Multi-Target Tracking in Distributed Sensor Networks using Particle PHD Filters
Multi-target tracking is an important problem in civilian and military
applications. This paper investigates multi-target tracking in distributed
sensor networks. Data association, which arises particularly in multi-object
scenarios, can be tackled by various solutions. We consider sequential Monte
Carlo implementations of the Probability Hypothesis Density (PHD) filter based
on random finite sets. This approach circumvents the data association issue by
jointly estimating all targets in the region of interest. To this end, we
develop the Diffusion Particle PHD Filter (D-PPHDF) as well as a centralized
version, called the Multi-Sensor Particle PHD Filter (MS-PPHDF). Their
performance is evaluated in terms of the Optimal Subpattern Assignment (OSPA)
metric, benchmarked against a distributed extension of the Posterior
Cram\'er-Rao Lower Bound (PCRLB), and compared to the performance of an
existing distributed PHD Particle Filter. Furthermore, the robustness of the
proposed tracking algorithms against outliers and their performance with
respect to different amounts of clutter is investigated.Comment: 27 pages, 6 figure
Scattering of 42 MeV /6.7-pJ/ alpha particles from even isotopes of cadmium. Supplement 1 - Absolute cross sections
Absolute cross sections for scattering of 42 MeV alpha particles from even isotopes of cadmiu
Elastic and inelastic scattering of 42-MeV alpha particles from even tellurium isotopes
Angular distributions of elastic and inelastic scattering of 42-MeV alpha particles measured for even tellurium isotope
Optical polarimetric monitoring of the type II-plateau SN 2005af
Aims. Core-collapse supernovae may show significant polarization that implies
non-spherically symmetric explosions. We observed the type II-plateau SN 2005af
using optical polarimetry in order to verify whether any asphericity is present
in the supernova temporal evolution. Methods. We used the IAGPOL imaging
polarimeter to obtain optical linear polarization measurements in R (five
epochs) and V (one epoch) broadbands. Interstellar polarization was estimated
from the field stars in the CCD frames. The optical polarimetric monitoring
began around one month after the explosion and lasted ~30 days, between the
plateau and the early nebular phase. Results. The weighted mean observed
polarization in R band was [1.89 +/- 0.03]% at position angle (PA) 54 deg.
After foreground subtraction, the level of the average intrinsic polarization
for SN 2005af was ~0.5% with a slight enhancement during the plateau phase and
a decline at early nebular phase. A rotation in PA on a time scale of days was
also observed. The polarimetric evolution of SN 2005af in the observed epochs
is consistent with an overall asphericity of ~20% and an inclination of ~30
deg. Evidence for a more complex, evolving asphericity, possibly involving
clumps in the SN 2005af envelope, is found.Comment: 6 pages, 5 figures, to be published A&
Gamma ray angular correlations following inelastic scattering of 42-MeV alpha particles from magnesium 24
Angular correlation between inelastically scattered alpha particles and gamma rays emitted in subsequent nuclear decay of magnesium 2
Measurement of exciton correlations using electrostatic lattices
We present a method for determining correlations in a gas of indirect
excitons in a semiconductor quantum well structure. The method involves
subjecting the excitons to a periodic electrostatic potential that causes
modulations of the exciton density and photoluminescence (PL). Experimentally
measured amplitudes of energy and intensity modulations of exciton PL serve as
an input to a theoretical estimate of the exciton correlation parameter and
temperature. We also present a proof-of-principle demonstration of the method
for determining the correlation parameter and discuss how its accuracy can be
improved.Comment: 10 pages, 11 figure
- …