**NASA TN D-4948** 

brought to you by CORE

NASA TECHNICAL NOTE



NASA TN D-4948



Ĩ.

LOAN COPY: RETURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX

# SCATTERING OF 42-MeV (6.7-pJ) ALPHA PARTICLES FROM EVEN ISOTOPES OF CADMIUM

Supplement I - Absolute Cross Sections

by Norton Baron, Regis F. Leonard, and William M. Stewart Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . DECEMBER 1968



# SCATTERING OF 42-MeV (6.7-pJ) ALPHA PARTICLES FROM EVEN ISOTOPES OF CADMIUM SUPPLEMENT I - ABSOLUTE CROSS SECTIONS

--- --

By Norton Baron, Regis F. Leonard, and William M. Stewart

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 – CFSTI price \$3.00

#### ABSTRACT

Measurements have been performed that permit the determination of absolute cross sections for elastic and inelastic scattering of 42-MeV alpha particles from the even isotopes of cadmium. Previously reported measurements were unable to be converted to absolute cross sections because of the presence on the targets of a gold backing of unknown thickness. The thickness of the backing has been determined by measuring the yield of elastically scattered alpha particles from a gold foil of known thickness and comparing this yield with that observed from the gold backing during the cadmium experiment. Optical model and distorted-wave Born approximation calculations are carried out and compared with the absolute cross sections.

# SCATTERING OF 42-MeV (6. 7-pJ) ALPHA PARTICLES FROM EVEN ISOTOPES OF CADMIUM SUPPLEMENT I - ABSOLUTE CROSS SECTIONS by Norton Baron, Regis F. Leonard, and William M. Stewart Lewis Research Center

### SUMMARY

Auxiliary experiments have been performed to determine the amount of gold backing present on targets used in a previously reported experiment. These measurements make possible the determination of absolute cross sections for the scattering of 42-MeV alpha particles from isotopically enriched targets of cadmium 110, 112, 114, and 116.

The absolute elastic cross sections obtained have been analyzed using a fourparameter Woods-Saxon potential, and excellent fits have been obtained. Inelastic scattering has been analyzed using a distored-wave Born approximation (DWBA) calculation. The results of these calculations are in excellent agreement with the experimental data and with previously reported measurements of deformation parameters for onephonon states.

## INTRODUCTION

The present work was performed in order to obtain absolute cross sections based solely on experimental measurement for the scattering of 42-MeV alpha particles from the even isotopes of cadmium. In a previous report (ref. 1), absolute cross sections were inferred by adjusting their values in order to optimize the quality of fit obtainable in optical model calculations. This procedure was followed in the analysis of that data because of the presence of a gold backing of unknown thickness on the targets used in that work.

## EXPERIMENTAL ARRANGEMENT

The experimental arrangement for the present work is identical to that described in reference 1. Alpha particles were scattered from a gold target of known thickness and detected in the same geometrical arrangement as was employed in reference 1. Comparison of the yield of this scattering with the yield of alpha particles scattered from the gold impurity in the cadmium targets then made possible an absolute determination of the amount of gold present in each of the cadmium targets. The thicknesses of the carbon backings were known so that it was then possible to obtain an absolute value for the thickness of the cadmium targets. In addition, it was possible to correct the cadmium elastic yields at forward angles where the gold elastic peak had interfered with the cadmium elastic peak.

## EXPERIMENTAL RESULTS

The four cadmium targets employed in the work of reference 1 were determined to have the compositions and thicknesses given in table I. Thicknesses are quoted as a real density  $(mg/cm^2)$  and as the energy loss (keV) suffered by an 8.78 MeV alpha particle in passing through the target.

## **CROSS SECTIONS**

The absolute cross sections for elastic and inelastic scattering of 42-MeV alpha particles from the even isotopes of cadmium are listed in tables II to V and are plotted in figure 1.

## ANALYSIS OF ELASTIC AND INELASTIC SCATTERING

Both the elastic and inelastic scattering were analyzed in exactly the same way as reported in reference 1. The elastic data were fitted with a four-parameter Woods-Saxon potential, the parameters of which were automatically optimized by the computer code SCAT 4. The inelastic data were treated using the computer code DRC and the optical potentials which resulted from the fitting of the elastic scattering. Table VI lists the optical potentials that were obtained. Table VII lists the deformation parameters which resulted from fitting the inelastic data. The results of these calculations are shown with the data in figure 1.

## CONCLUSIONS

Because the absolute magnitudes of the cross sections have been changed somewhat, the optical model parameters and nuclear deformation parameters reported herein are slightly different from those listed in reference 1. Fundamentally, however, the conclusions to be drawn from the earlier work are unchanged.

Lewis Research Center,

No.

National Aeronautics and Space Administration, Cleveland, Ohio, September 13, 1968, 129-02-04-06-22.

## REFERENCE

 Baron, Norton; Leonard, Regis F.; and Stewart, William M.; Scattering of 42-MeV (6.7-pv) Alpha Particles From Even Isotopes of Cadmium. NASA TN D-4256, 1967.

| Cadmium | Cadmium th | Gold thickness |           |      |
|---------|------------|----------------|-----------|------|
| isotope | $mg/cm^2$  | keV            | $mg/cm^2$ | ke V |
| 110     | 0.127      | 29.42          | 0.045     | 7.32 |
| 112     | . 312      | 72.0           | . 028     | 4.57 |
| 114     | 1.01       | 234            | . 024     | 3.8  |
| 116     | . 791      | 182            | 0         | 0    |

TABLE I. - TARGET THICKNESS

4

---

- ---

---

#### 42-MeV ALPHA PARTICLES FROM CADMIUM 110

L

| (a) is the bouttoring |                         |                     |                                       |  |  |
|-----------------------|-------------------------|---------------------|---------------------------------------|--|--|
| Center-of-mass        | Differential            | Center-of-mass      | Differential                          |  |  |
| scattering angle,     | cross section,          | scattering angle,   | cross section,                        |  |  |
| $\theta_{\rm cm}$ ,   | dσ/dΩ,                  | $\theta_{\rm cm}$ , | dσ/dΩ,                                |  |  |
| deg                   | $fm^2/sr$               | deg                 | $fm^2/sr$                             |  |  |
|                       |                         |                     | /                                     |  |  |
| 31.04                 | 26.8±0.1                | 47.50               | $0.670 \pm 0.012$                     |  |  |
| 33.11                 | $20.9\pm0.1$            | 49.55               | .647±0.012                            |  |  |
| 35.17                 | $12.1{\pm}0.1$          | 51.60               | .692±0.012                            |  |  |
| 37.23                 | $5.93 \pm 0.02$         | 53.64               | .481±0.011                            |  |  |
| 39.28                 | $3.66\pm0.02$           | 55.69               | $.210\pm0.007$                        |  |  |
| 41.34                 | $3.55 \pm 0.02$         | 57.73               | .087±0.005                            |  |  |
| 43.40                 | $2.90 \pm 0.02$         | 59.77               | .143±0.006                            |  |  |
| 45.45                 | $1.49\pm0.01$           | 61.81               | . 155±0. 004                          |  |  |
| (k                    | ) Inelastic scatte      | ering, 0.65 MeV     |                                       |  |  |
| 31.05                 | 0.433±0.015             | 47.51               | 0.192±0.007                           |  |  |
| 33.11                 | .186±0.009              | 49.56               | $.110\pm0.005$                        |  |  |
| 35.18                 | . 334±0. 011            | 51.61               | $.032{\pm}0.002$                      |  |  |
| 37.24                 | . 539±0. 009            | 53.66               | $.040 \pm 0.002$                      |  |  |
| 39.30                 | . 368±0.009             | 55.70               | .061±0.004                            |  |  |
| 41.35                 | . 123±0. 005            | 57.74               | .069±0.004                            |  |  |
| 43.41                 | .068±0.005              | 59.78               | .032±0.002                            |  |  |
| 45.46                 | .176±0.005              | 61.82               | .007±0.001                            |  |  |
| (c                    | ) Inelastic scatte      | ring, 1.48 MeV      |                                       |  |  |
| 31.06                 | 0.088+0.009             | 47.53               | $0.010\pm0.001$                       |  |  |
| 33.13                 | . 030+0. 006            | 49.59               | .031+0.002                            |  |  |
| 35.19                 | .014+0.005              | 51.63               | 0.022+0.002                           |  |  |
| 37.25                 | $.047\pm0.002$          | 53.68               | .010+0.001                            |  |  |
| 39.31                 | .057±0.005              | 55.72               | .006±0.001                            |  |  |
| 41.37                 | $.030\pm0.002$          | 57.76               | .010±0.001                            |  |  |
| 43.42                 | .019±0.004              | 59.80               | .0095±0.0015                          |  |  |
| 45.48                 | .014±0.001              | 61.84               | $.0079 \pm 0.0014$                    |  |  |
| [                     | <br> ) Inelastic scatte | ring. 2.07 MeV      |                                       |  |  |
| (                     |                         |                     | · · · · · · · · · · · · · · · · · · · |  |  |
| 31.07                 | 0.171±0.011             | 47.54               | $0.032 \pm 0.002$                     |  |  |
| 33.13                 | . 320±0.009             | 49.59               | .041±0.004                            |  |  |
| 35.20                 | . 200±0. 009            | 51.64               | $.0516\pm0.0035$                      |  |  |
| 37.26                 | . 103±0.004             | 53.69               | $.0470\pm0.0033$                      |  |  |
| 39.32                 | .066±0.005              | 55.73               | $.0179\pm0.0021$                      |  |  |
| 41.38                 | . 138±0. 005            | 57.78               | .0198±0.0021                          |  |  |
| 43.43                 | .144±0.006              | 59.82               | .0108±0.0016                          |  |  |
| 45.49                 | .079±0.004              | 61.85               | .0274±0.0026                          |  |  |

#### (a) Elastic scattering

#### TABLE III. - DIFFERENTIAL CROSS SECTION FOR SCATTERING OF

## 42-MeV ALPHA PARTICLES FROM CADMIUM 112

|                     | 1                    | 0                   | т                   |
|---------------------|----------------------|---------------------|---------------------|
| Center-of-mass      | Differential         | Center-of-mass      | Differential        |
| scattering angle,   | cross section,       | scattering angle,   | cross section,      |
| $\theta_{\rm cm}$ , | dσ/dΩ,               | $\theta_{\rm cm}$ , | dσ/dΩ,              |
| deg                 | $fm^2/sr$            | deg                 | $\rm{fm}^2/\rm{sr}$ |
| 21.02               | 26 0.0 1             |                     | 0 652 0 006         |
| 31.02               | $26.0\pm0.1$         | 47.47               | 0.003±0.000         |
| 25 15               | $20.0\pm0.1$         | 49.02<br>51.57      | 735±0.008           |
| 37 20               | 5 26+0 03            | 53 62               | 162±0 005           |
| 30.26               | 3.04+0.03            | 55.66               | 161+0 004           |
| 11 22               | 3.04±0.03            | 57 70               | 010+0.003           |
| 43.37               | $3.4\pm0.03$         | 59.74               | $162\pm0.003$       |
| 45.31               | $1, 35\pm0, 01$      | 61 78               | 165+0 003           |
| 45.42               | 1.35±0.01            | 01.70               | . 105±0.005         |
|                     | (b) Inelastic scatte | ering, 0.621 MeV    |                     |
| 31 03               | 0 374+0 013          | 47 49               | 0 209+0 004         |
| 33.09               | 160+0.009            | 49.53               | 072+0 003           |
| 35,16               | 320+0 009            | 51 58               | 015 0 001           |
| 37 21               | 596+0 012            | 53 63               | 042+0 003           |
| 39.27               | $351\pm0.011$        | 55.67               | 087+0.003           |
| 41.33               | . 101+0.005          | 57.71               | .070+0.003          |
| 43, 38              | . 054+0. 004         | 59.75               | . 0264+0. 0016      |
| 45.43               | . 203±0.007          | 61.79               | .0031±0.0008        |
|                     | (c) Inelastic scatte | 1 ring, 1.35 MeV    | Ι.                  |
| 21.04               | 0.020210.0059        | 47 50               | 0.019610.0015       |
| 31.04               | $0.0393\pm0.0058$    | 47.50               | $0.0100\pm0.0010$   |
| 33.10               | $.0300\pm0.0034$     | 49.00               | .0201±0.0010        |
| 35.17               | .0146±0.0042         | 51.60               | .0105±0.0013        |
| 37.22               | $.0341\pm0.0040$     | 55.04<br>55.00      | .0050±0.0009        |
| 39.20               | . 0303±0. 0040       | 57 72               |                     |
| 41.34               | $0.030\pm0.0031$     | 50.77               | 0125±0.0008         |
| 43.39               | $.0127\pm0.0024$     | 61 81               | $0125\pm0.0009$     |
| 45.45               | .0121±0.0023         | 01.01               | .0000±0.0000        |
| (                   | d) Inelastic scatte  | ring, 1.98 MeV      |                     |
| 31.05               | 0.154±0.008          | 47.51               | $0.0264 \pm 0.0017$ |
| 33.11               | .254±0.008           | 49.56               | $.0284 \pm 0.0019$  |
| 35.18               | $.169 \pm 0.007$     | 51.61               | $.0452 \pm 0.0023$  |
| 37.24               | .070±0.004           | 53.66               | $.0355 \pm 0.0021$  |
| 39.29               | .0334±0.0052         | 55.70               | $.0186 \pm 0.0012$  |
| 41.35               | . 118±0. 004         | 57.74               | $.0096\pm0.0009$    |
| 43.41               | .0945±0.0046         | 59.78               | $.0168 \pm 0.0012$  |
| 45.46               | .0540±0.0039         | 61.82               | $.0168 \pm 0.0013$  |
|                     | I                    | l                   |                     |

#### (a) Elastic scattering

.

| (a) Elastic scattering |                       |                   |                             |  |
|------------------------|-----------------------|-------------------|-----------------------------|--|
| Center-of-mass         | Differential          | Center-of-mass    | Differential                |  |
| scattering angle,      | cross section,        | scattering angle, | cross section,              |  |
| $\theta_{\rm cm}$ ,    | dσ/dΩ,                | $\theta_{\rm cm}$ | $d\sigma/d\Omega$ ,         |  |
| deg                    | fm <sup>2</sup> /sr   | deg               | $\mathrm{fm}^2/\mathrm{sr}$ |  |
| 31.01                  | <b>27.1</b> ±0        | 47.45             | 0.630±0.004                 |  |
| 33.07                  | $18.5 \pm 0$          | 49.50             | $.678 \pm 0.004$            |  |
| 35.13                  | 11.3±0                | 51.54             | .670±0.004                  |  |
| 37.18                  | 5.35±0.03             | 53.59             | .374±0.003                  |  |
| 39.24                  | $3.72 \pm 0.02$       | 55.63             | $.135 \pm 0.002$            |  |
| 41.29                  | $3.44{\pm}0.01$       | 57.67             | .0985±0.0017                |  |
| 43.35                  | $2.54 \pm 0.01$       | 59.71             | $.151 \pm 0.002$            |  |
| 45.40                  | $1.15 \pm 0.01$       | 61.74             | $.138 \pm 0.002$            |  |
| '<br>(                 | b) Inelastic scatteri | ing, 0.560 MeV    |                             |  |
| 31.01                  | $0.602 \pm 0.008$     | 47.46             | $0.160 \pm 0.003$           |  |
| 33.07                  | $.194 \pm 0.003$      | 49.51             | $.0526 \pm 0.0019$          |  |
| 35.13                  | $.436 \pm 0.006$      | 51.55             | $.0180 \pm 0.0010$          |  |
| 37.19                  | $.568 \pm 0.007$      | 53.60             | $.0426 \pm 0.0013$          |  |
| 39.25                  | $.370\pm0.005$        | 55.64             | $.0770\pm0.0016$            |  |
| 41.30                  | $.106 \pm 0.003$      | 57.68             | $.0570 \pm 0.0014$          |  |
| 43.36                  | $.105 \pm 0.003$      | 59.72             | $.0183\pm0.0009$            |  |
| 45.41                  | $.208 \pm 0.004$      | 61.76             | $.0026\pm0.0005$            |  |
| 1                      | (c) Inelastic scatter | ing, 1.23 MeV     |                             |  |
| 31.02                  | $0.0458 \pm 0.0038$   | 47.47             | $0.0097 \pm 0.0008$         |  |
| 33.08                  | $.0197 \pm 0.0029$    | 49.5 <b>2</b>     | $.0155 \pm 0.0009$          |  |
| 35.14                  | $.0231 \pm 0.0023$    | 51.57             | $.0124 \pm 0.0008$          |  |
| 37.20                  | $.0298 \pm 0.0023$    | 53.61             | $.0055 \pm 0.0005$          |  |
| 39.26                  | $.0460 \pm 0.0019$    | 55.65             | $.0030\pm0.0004$            |  |
| 41.31                  | $.0309 \pm 0.0016$    | 57.69             | $.0072 \pm 0.0005$          |  |
| 43.37                  | $.0207 \pm 0.0015$    | 59.73             | $.0084 \pm 0.0006$          |  |
| 45.42                  | $.0070\pm0.0010$      | 61.77             | $.0069 \pm 0.0005$          |  |
|                        | (d) Inelastic scatter | ring, 1.93 MeV    |                             |  |
| 31.03                  | $0.206 \pm 0.004$     | 47.48             | $0.0119 \pm 0.0010$         |  |
| 33.09                  | $.229 \pm 0.005$      | 49.53             | $.0170\pm0.0010$            |  |
| 35.15                  | $.1471 \pm 0.0035$    | 51.58             | $.0341\pm0.0012$            |  |
| 37.21                  | $.0540\pm0.0023$      | 53.63             | $.0251\pm0.0010$            |  |
| 39.27                  | $.0630 \pm 0.0022$    | 55.67             | $.0111 \pm 0.0007$          |  |
| 41.33                  | $.0881 \pm 0.0026$    | 57.71             | .0057±0.0005                |  |
| 43.38                  | $.0917 \pm 0.0026$    | 59.75             | .0093±0.0006                |  |
| 45.43                  | .0365±0.0018          | 61.79             | $.0105\pm0.0008$            |  |

#### 42-MeV ALPHA PARTICLES FROM CADMIUM 114

(a) Elastic scattering

| (b) : | Inelastic | scattering, | 0.513 | MeV |
|-------|-----------|-------------|-------|-----|
|-------|-----------|-------------|-------|-----|

| Center-of-mass      | Differential        | Center-of-mass      | Differential                |
|---------------------|---------------------|---------------------|-----------------------------|
| scattering angle,   | cross section,      | scattering angle,   | cross section,              |
| $\theta_{\rm cm}$ , | $d\sigma/d\Omega$ , | $\theta_{\rm cm}$ , | dσ/dΩ                       |
| deg                 | fm <sup>2</sup> /sr | deg                 | $\mathrm{fm}^2/\mathrm{sr}$ |
| 8.28                | 19000±21            | 45.37               | 0.929±0.010                 |
| 10.34               | 9250±14             | 47.42               | .620±0.005                  |
| 12.41               | 4770±10             | 49.47               | . 693±0. 005                |
| 14.48               | 2360±7.3            | 51.52               | .572±0.004                  |
| 16.55               | $1290\pm 5.4$       | 53.56               | . 241±0. 003                |
| 18.61               | 670±3.9             | 55.60               | . 101±0. 002                |
| 20.68               | $330\pm 2.7$        | 57.64               | .107±0.002                  |
| 22. 74              | $199{\pm}2.1$       | 59.70               | .142±0.002                  |
| 24.80               | 122.0±0.10          | 61.71               | .0895±0.002                 |
| 28.93               | $31.6 \pm 0.053$    | 63.75               | $.0355 \pm 0.001$           |
| 30.99               | $26.6 \pm 0.045$    | 65.78               | .0132±0.0005                |
| 33.05               | 21.2±0.038          | 67.81               | .0228±0.0008                |
| 35.11               | $11.0\pm0.029$      | 69.83               | $.0299 \pm 0.0008$          |
| 37.16               | $4.52 \pm 0.020$    | 71.86               | $.0227 \pm 0.0009$          |
| 39.22               | $3.88 \pm 0.017$    | 73.88               | $.00733 \pm 0.0003$         |
| 41.27               | $3.31 \pm 0.019$    | 75.90               | .00255±0.0002               |
| 43.32               | $2.44\pm0.014$      | 77.92               | $.0464 \pm 0.0002$          |

| 28.94 | $0.0604 \pm 0.0024$ | 55.63 | $0.00523 \pm 0.00046$ |
|-------|---------------------|-------|-----------------------|
| 31.00 | .0836±0.0026        | 57.67 | $.00792 \pm 0.00043$  |
| 33.06 | $.0260 \pm 0.0015$  | 59.70 | $.00549 \pm 0.00044$  |
| 35.12 | .0327±0.0016        | 61.74 | .00174±0.00021        |
| 37.18 | .0618±0.0029        | 63.77 | .00151±0.00022        |
| 39.24 | .0466±0.0020        | 65.81 | .00233±0.00023        |
| 41.29 | $.0295 \pm 0.0020$  | 67.84 | .00338±0.00033        |
| 43.34 | .0137±0.0011        | 69.86 | .00371±0.00031        |
| 45.40 | $.0151 \pm 0.0014$  | 71.89 | .00153±0.00019        |
| 47.45 | .0206±0.0008        | 73.91 | .00068±0.00010        |
| 49.49 | $.0190 \pm 0.0014$  | 75.93 | .00083±0.00014        |
| 51.54 | $.0117 \pm 0.0006$  | 77.95 | .00124±0.00013        |
| 53.58 | $.00410\pm0.00050$  |       |                       |
|       |                     |       |                       |

| Center-of-mass<br>scattering angle,<br>$\theta_{cm}$ ,<br>deg | Differential cross section, $d\sigma/d\Omega$ , $fm^2/sr$ | Center-of-mass scattering angle,<br>$\theta_{\rm Cm}$ , deg | Differential<br>cross section,<br>dσ/dΩ<br>fm <sup>2</sup> /sr |
|---------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|
| 31.00                                                         | 0.585±0.008                                               | 55.61                                                       | $0.0730 \pm 0.0016$                                            |
| 33.06                                                         | $.131\pm0.004$                                            | 57.65                                                       | .0365±0.0009                                                   |
| 35.11                                                         | .478±0.006                                                | 59.69                                                       | $.0149 \pm 0.0007$                                             |
| 37.17                                                         | .593±0.008                                                | 61.72                                                       | .0096±0.0005                                                   |
| 39.23                                                         | $.322 \pm 0.005$                                          | 63.76                                                       | .0254±0.0009                                                   |
| 41.28                                                         | .0925±0.004                                               | 65.79                                                       | .0258±0.0008                                                   |
| 43.33                                                         | .101±0.004                                                | 67.82                                                       | .0122±0.0006                                                   |
| 45.38                                                         | $.244{\pm}0.005$                                          | 69.85                                                       | .0020±0.0003                                                   |
| 47.43                                                         | .167±0.003                                                | 71.87                                                       | .0033±0.0004                                                   |
| 49.48                                                         | $.0535 \pm 0.003$                                         | 73.89                                                       | $.0086 \pm 0.0004$                                             |
| 51.53                                                         | .0204±0.0009                                              | 75.91                                                       | .0099±0.0005                                                   |
| 53.57                                                         | $.0659 \pm 0.0017$                                        | 77.93                                                       | .0053±0.0003                                                   |
|                                                               |                                                           |                                                             |                                                                |

|       | (d) Inelastic scat | tering, 1.90 MeV |                      |
|-------|--------------------|------------------|----------------------|
| 31.01 | 0.193±0.005        | 55.64            | 0.00725±0.0006       |
| 33.07 | .175±0.005         | 57.68            | .00590±0.00037       |
| 35.13 | .142±0.004         | <b>59.72</b>     | .00945±0.0005        |
| 37.19 | .0450±0.0023       | 61.76            | .00965±0.0005        |
| 39.25 | .0674±0.0024       | 63.79            | .00551±0.0005        |
| 41.30 | .0974±0.004        | 65.82            | $.00222 \pm 0.00023$ |
| 43.36 | .079±0.003         | 67.85            | .00249±0.00029       |
| 45.41 | .0344±0.0018       | 69.88            | $.00353 \pm 0.00028$ |
| 47.46 | .0186±0.0008       | 71.90            | $.00434 \pm 0.00032$ |
| 49.51 | .0238±0.0011       | 73.93            | $.00242 \pm 0.00018$ |
| 51.55 | .0318±0.0011       | 75.45            | .00109±0.00015       |
| 53.60 | .0206±0.0011       | 77.97            | .00056±0.00009       |
| ····· |                    |                  |                      |

| Cadmium<br>isotope | Strength of real part<br>of nuclear optical<br>potential,<br>V,<br>Mev | Strength of imaginary<br>part of nuclear op-<br>tical potential,<br>W,<br>Mev | Diffuseness<br>parameter,<br>a,<br>fm | Nuclear radius<br>constant,<br>R <sub>O</sub> ,<br>fm | Total reaction<br>cross section,<br>${}^{\sigma}R'_{fm}^2$ | Goodness<br>of fit,<br>$\chi^2/N$ |
|--------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-----------------------------------|
| 110                | 44.19                                                                  | 20.07                                                                         | 0.6324                                | 1.50                                                  | 180.9                                                      | 0.22                              |
| 112                | 44.09                                                                  | 20.89                                                                         | . 6377                                | 1.50                                                  | 184.6                                                      | . 58                              |
| 114                | 39.34                                                                  | 21.26                                                                         | . 6587                                | 1.50                                                  | 188.3                                                      | . 16                              |
| 116                | 35.48                                                                  | 22.05                                                                         | . 7048                                | 1.50                                                  | 197.1                                                      | 2.11                              |

i

Sec.

TABLE VI. - ELASTIC SCATTERING ANALYSIS

| TABLE VII INELASTIC SCATTERING ANALYSI | TABLE V | 7 <b>II.</b> – II | NELASTIC | SCATTERING | ANALYSI |
|----------------------------------------|---------|-------------------|----------|------------|---------|
|----------------------------------------|---------|-------------------|----------|------------|---------|

| Cadmium | Nuclear deformation parameters |                |
|---------|--------------------------------|----------------|
| isotope | β <sub>2</sub>                 | β <sub>3</sub> |
| 110     | 0.20                           | 0.18           |
| 112     | . 19                           | . 15           |
| 114     | , 21                           | . 14           |
| 116     | . 23                           | . 15           |



Figure 1. - Differential cross sections for elastic and inelastic scattering of 42-MeV alpha particles.



Figure 1. - Concluded.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

OFFICIAL BUSINESS

FIRST CLASS MAIL

 $\frac{1}{2} = \frac{1}{2} \left[ \frac{1}{2} + \frac{1$ 

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- NATIONAL AERONAUTICS AND SPACE ACT OF 1958

## NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

#### TECHNICAL MEMORANDUMS: Information receiving limited distribution

because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

**TECHNICAL TRANSLATIONS: Information** published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

#### TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546