182 research outputs found

    Pressure Selects Dominant Anaerobic Methanotrophic Phylotype and Sulfate Reducing Bacteria in Coastal Marine Lake Grevelingen Sediment

    Get PDF
    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is mediated by, respectively, anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). When a microbial community from coastal marine Lake Grevelingen sediment, containing ANME-3 as the most abundant type of ANME, was incubated under a pressure gradient (0.1–40 MPa) for 77 days, ANME-3 was more pressure sensitive than the SRB. ANME-3 activity was higher at lower (0.1, 0.45 MPa) over higher (10, 20, and 40 MPa) CH4 total pressures. Moreover, the sulfur metabolism was shifted upon changing the incubation pressure: only at 0.1 MPa elemental sulfur was detected in a considerable amount and SRB of the Desulfosarcina/Desulfococcus genera were more enriched at elevated pressures than the Desulfobulbus. This study provides evidence that ANME-3 can be constrained at shallow environments (45 m depth), despite the scarce bioavailable energy, because of its pressure sensitivity. Besides, the association between ANME-3 and SRB can be steered by changing solely the incubation pressure. The ANME-3 cells present in the marine Lake Grevelingen possess high specific AOM-SR rates and thus, can be of great potential to be applied in the industry after enrichment

    Ultrasounds application for nut and coffee wastes valorisation via biomolecules solubilisation and methane production

    Get PDF
    Lignocellulosic materials (LMs) are abundant feedstocks with excellent potential for biofuels and biocommodities production. In particular, nut and coffee wastes are rich in biomolecules, e.g. sugars and polyphenols, the valorisation of which still has to be fully disclosed. This study investigated the effectiveness of ultrasounds coupled with hydrothermal (i.e. ambient temperature vs 80 °C) and methanol (MeOH)-based pretreatments for polyphenols and sugar solubilisation from hazelnut skin (HS), almond shell (AS), and spent coffee grounds (SCG). The liquid fraction obtained from the pretreated HS was the most promising in terms of biomolecules solubilisation. The highest polyphenols, i.e. 123.9 (±2.3) mg/g TS, and sugar, i.e. 146.0 (±3.4) mg/g TS, solubilisation was obtained using the MeOH-based medium. However, the MeOH-based media were not suitable for direct anaerobic digestion (AD) due to the MeOH inhibition during AD. The water-based liquors obtained from pretreated AS and SCG exhibited a higher methane potential, i.e. 434.2 (±25.1) and 685.5 (±39.5) mL CH4/g glucosein, respectively, than the HS liquors despite having a lower sugar concentration. The solid residues recovered after ultrasounds pretreatment were used as substrates for AD as well. Regardless the pretreatment condition, the methane potential of the ultrasounds pretreated HS, AS, and SCG was not improved, achieving maximally 255.4 (±7.4), 42.8 (±3.3), and 366.2 (±4.2) mL CH4/g VS, respectively. Hence, the solid and liquid fractions obtained from HS, AS, and SCG showed great potential either as substrates for AD or, in perspective, for biomolecules recovery in a biorefinery context

    Selective Butanol Production From Carbon Monoxide by an Enriched Anaerobic Culture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] An anaerobic mixed culture able to grow on pure carbon monoxide (CO) as well as syngas (CO, CO2 and H2), that produced unusual high concentrations of butanol, was enriched in a bioreactor with intermittent CO gas feeding. At pH 6.2, it mainly produced acids, generally acetic and butyric acid. After adaptation, under stress conditions of CO exposure at a partial pressure of 1.8 bar and low pH (e.g., 5.7), the enrichment accumulated ethanol, but also high amounts of butanol, up to 6.8 g/L, never reported before, with a high butanol/butyric acid molar ratio of 12.6, highlighting the high level of acid to alcohol conversion. At the end of the assay, both the acetic acid and ethanol concentrations decreased, with concomitant butyric acid production, suggesting C2 to C4 acid bioconversion, though this was not a dominant bioconversion process. The reverse reaction of ethanol oxidation to acetic acid was observed in the presence of CO2 produced during CO fermentation. Interestingly, butanol oxidation with simultaneous butyric acid production occurred upon production of CO2 from CO, which has to the best of our knowledge never been reported. Although the sludge inoculum contained a few known solventogenic Clostridia, the relative taxonomic abundance of the enriched sludge was diverse in Clostridia and Bacilli classes, containing known solventogens, e.g., Clostridium ljungdhalii, Clostridium ragsdalei and Clostridium coskatii, confirming their efficient enrichment. The relative abundance of unassigned Clostridium species amounted to 27% with presumably novel ethanol/butanol producers.This publication has emanated from research supported by Science Foundation Ireland (SFI) through the SFI Research Professorship Programme entitled Innovative Energy Technologies for Biofuels, Bioenergy and a Sustainable Irish Bioeconomy (IETSBIO3; grant number 15/RP/2763) and the Research Infrastructure research grant Platform for Biofuel Analysis (Grant Number 16/RI/3401). This research was partly funded by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) through project CTQ2017-88292-R and European FEDER funds. The BIOENGIN group thanks Xunta de Galicia for financial support to its Competitive Reference Research Group (ED431C 2021/55). Funding for open access charge provided by Universidade da Coruña/CISUGIrlanda. Science Foundation Ireland; 15/RP/2763Irlanda. Science Foundation Ireland; 16/RI/3401Xunta de Galicia; ED431C 2021/5

    Effect of Endogenous and Exogenous Butyric Acid on Butanol Production From CO by Enriched Clostridia

    Get PDF
    [Abstract] Butanol is a potential renewable fuel. To increase the selectivity for butanol during CO fermentation, exogenous acetic acid and ethanol, exogenous butyric acid or endogenous butyric acid from glucose fermentation have been investigated using CO as reducing power, with a highly enriched Clostridium sludge. Addition of 3.2 g/L exogenous butyric acid led to the highest 1.9 g/L butanol concentration with a conversion efficiency of 67%. With exogenous acetate and ethanol supply, the butanol concentration reached 1.6 g/L at the end of the incubation. However, the presence of acetic acid and ethanol favoured butanol production to 2.6 g/L from exogenous butyric acid by the enriched sludge. Finally, exogenous 14 g/L butyric acid yielded the highest butanol production of 3.4 g/L, which was also among the highest butanol concentration from CO/syngas fermentation reported so far. CO addition triggered butanol production from endogenous butyric acid (produced from glucose, Glucose + N2) with as high as 58.6% conversion efficiency and 62.1% butanol yield. However, no efficient butanol production was found from glucose and CO co-fermentation (Glucose + CO), although a similar amount of endogenous butyric acid was produced compared to Glucose + N2. The Clostridium genus occupied a relative abundance as high as 82% from the initial inoculum, while the Clostridia and Bacilli classes were both enriched and dominated in Glucose + N2 and Glucose + CO incubations. This study shows that the supply of butyric acid is a possible strategy for enhancing butanol production by CO fed anaerobic sludge, either via exogenous butyric acid, or via endogenous production by sugar fermentation.This research was partly funded by the Spanish Ministry of Science and Innovation through project PID2020-117805RB-I00 and European FEDER funds. The publication has also emanated from research supported by Science Foundation Ireland (SFI) through the SFI Research Professorship Programme entitled Innovative Energy Technologies for Biofuels, Bioenergy and a Sustainable Irish Bioeconomy (IETSBIO3; grant number 15/RP/2763) and the Research Infrastructure research grant Platform for Biofuel Analysis (Grant Number 16/RI/3401). The BIOENGIN group, at UDC, thanks Xunta de Galicia for financial support to Competitive Reference Research Groups (ED431C 2021/55)Irlanda. Science Foundation Ireland; 15/RP/2763Irlanda. Science Foundation Ireland; 16/RI/3401Xunta de Galicia; ED431C 2021/5

    High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana

    Get PDF
    This study focused on continuous-flow hydrogen production by Thermotoga neapolitana at a hydraulic retention time (HRT) decreasing from 24 to 5 h. At each HRT reduction, the hydrogen yield (HY) immediately dropped, but recovered during prolonged cultivation at constant HRT. The final HY in each operating period decreased from 3.4 (±0.1) to 2.0 (±0.0) mol H2/mol glucose when reducing the HRT from 24 to 7 h. Simultaneously, the hydrogen production rate (HPR) and the liquid phase hydrogen concentration (H2aq) increased from 82 (±1) to 192 (±4) mL/L/h and from 9.1 (±0.3) to 15.6 (±0.7) mL/L, respectively. Additionally, the effluent glucose concentration increased from 2.1 (±0.1) to above 10 mM. Recirculating H2-rich biogas prevented the supersaturation of H2aq reaching a value of 9.3 (±0.7) mL/L, resulting in complete glucose consumption and the highest HPR of 277 mL/L/h at an HRT of 5 h

    Evaluation of selenium-enriched microalgae produced on domestic wastewater as biostimulant and biofertilizer for growth of selenium-enriched crops

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10811-021-02523-y.This study assessed selenium (Se)-enriched microalgae biomass produced in a pilot-scale raceway pond treating domestic wastewater and an extract thereof as biostimulant and biofertilizer. After producing the Se-enriched microalgae in a raceway pond treating domestic wastewater, the effect of Se-enriched microalgae biomass and an extract thereof on seed germination, growth, and yield of beans (Phaseolus vulgaris L.) was studied by conducting a germination test and foliar and soil applications in pot experiments. Furthermore, the potential of the Se-enriched microalgae dry biomass and extract to elevate the Se concentration of beans, leading to a biofortified crop, was also assessed in a pot experiment. Presoaking seeds in the Se-enriched microalgae extract at low concentration (1%) enhanced their germination, as measured by the significant increase of seedling length and vigor index. Application of the Se-enriched microalgae extract as foliar spray was more effective in stimulating the growth of beans and increasing the Se concentration in the seeds compared to its application as soil drench. Foliar spray resulted in a 3.5 times increase of the dry biomass of the seeds (at 1%) and 1.8 times Se increment in the seeds (at 5%). Additionally, amendment of the soil with Se-enriched microalgae biomass (at 5%) enhanced the growth of beans (3.2 times for seeds) and Se concentration in the bean plants (1.8 times for seeds), simultaneously. These results indicate that microalgae cultivated in Se-rich wastewater could be used as a microalgae-based biofertilizer or biostimulant to improve the bean seed yield and the Se content in the beans, leading to beans with a higher market value. This may also offer an environmental-friendly and sustainable approach to biofortify food crops in Se-deficient regions.This work has been financially supported by the Special Research Fund (BOF, grant number BOFCHN2017000801) from Ghent University as well as the Chinese Scholarship Council (CSC, grant number 201606300023).Peer ReviewedObjectius de Desenvolupament Sostenible::6 - Aigua Neta i SanejamentObjectius de Desenvolupament Sostenible::12 - ProducciĂł i Consum ResponsablesPostprint (author's final draft

    Biokinetics Of microbial consortia using biogenic sulfur as a novel electron donor for sustainable denitrification

    Get PDF
    In this study, the biokinetics of autotrophic denitrification with biogenic S0 (ADBIOS) for the treatment of nitrogen pollution in wastewaters were investigated. The used biogenic S0, a by-product of gas desulfurization, was an elemental microcrystalline orthorhombic sulfur with a median size of 4.69 µm and a specific surface area of 3.38 m2/g, which made S0 particularly reactive and bioavailable. During denitritation, the biomass enriched on nitrite (NO2–) was capable of degrading up to 240 mg/l NO2–-N with a denitritation activity of 339.5 mg NO2–-N/g VSS·d. The use of biogenic S0 induced a low NO2–-N accumulation, hindering the NO2–-N negative impact on the denitrifying consortia and resulting in a specific denitrification activity of 223.0 mg NO3–-N/g VSS·d. Besides Thiobacillus being the most abundant genus, Moheibacter and Thermomonas were predominantly selected for denitrification and denitritation, respectively

    Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials

    Get PDF
    Lignocellulosic materials are the most abundant biomass on the planet, representing a great opportunity for energy valorisation. This work investigated the effect of methanol-organosolv pretreatment on the methane production from hazelnut skin (HS), spent coffee grounds (SCG), and almond shell (AS). The pretreatment on the three lignocellulosic materials was performed at 130, 160, and 200 °C for 60 min using a 50% (v/v) methanol solution, with and without the addition of sulfuric acid as a catalyst. The biomethane potential of raw and pretreated substrates was evaluated under wet-mesophilic conditions in batch reactors, achieving 17.3 (±32.3), 293.4 (±46.6), and 23.2 (±9.6) mL CH4/g VS for HS, SCG, and AS, respectively. The methanol-organosolv pretreatment was particularly effective on HS, increasing its biomethane potential up to 310.6 (±22.2) CH4/g VS. On the contrary, all pretreatment conditions were ineffective on SCG and AS in terms of cumulative methane production. Among the three substrates, only HS showed significant composition changes due to the pretreatment, with the lignin content decreasing from 39.66 to 34.73% and the amount of bioavailable sugars increasing. An energy assessment confirmed the pretreatment efficacy on HS, with a maximum net positive energy recovery of 1.35 kWh/kg VS

    Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors

    Get PDF
    The continuous production of biohythane (mixture of biohydrogen and methane) from food waste using an integrated system of a continuously stirred tank reactor (CSTR) and anaerobic fixed bed reactor (AFBR) was carried out in this study. The system performance was evaluated for an operation period of 200 days, by stepwise shortening the hydraulic retention time (HRT). An increasing trend of biohydrogen in the CSTR and methane production rate in the AFBR was observed regardless of the HRT shortening. The highest biohydrogen yield in the CSTR and methane yield in the AFBR were 115.2 (±5.3) L H2/kgVSadded and 334.7 (±18.6) L CH4/kgCODadded, respectively. The AFBR presented a stable operation and excellent performance, indicated by the increased methane production rate at each shortened HRT. Besides, recirculation of the AFBR effluent to the CSTR was effective in providing alkalinity, maintaining the pH in optimal ranges (5.0–5.3) for the hydrogen producing bacteria
    • …
    corecore