281 research outputs found
Structural and spectroscopic characterisation of C4 oxygenates relevant to structure/activity relationships of the hydrogenation of α,β-unsaturated carbonyls
In the present work, we have investigated the conformational isomerism and calculated the vibrational spectra of the C4 oxygenates: 3-butyne-2-one, 3-butene-2-one, 2-butanone and 2-butanol using density functional theory. The calculations are validated by comparison to structural data where available and new, experimental inelastic neutron scattering and infrared spectra of the compounds. We find that for 3-butene-2-one and 2-butanol the spectra show clear evidence for the presence of conformational isomerism and this is supported by the calculations. Complete vibrational assignments for all four molecules are provided and this provides the essential information needed to generate structure/activity relationships for the sequential catalytic hydrogenation of 3-butyne-2-one to 2-butanol
The application of inelastic neutron scattering to investigate the interaction of methyl propanoate with silica
A modern industrial route for the manufacture of methyl methacrylate involves the reaction of methyl propanoate and formaldehyde over a silica-supported Cs catalyst. Although the process has been successfully commercialised, little is known about the surface interactions responsible for the forward chemistry. This work concentrates upon the interaction of methyl propanoate over a representative silica. A combination of infrared spectroscopy, inelastic neutron scattering, DFT calculations, X-ray diffraction and temperature-programmed desorption is used to deduce how the ester interacts with the silica surface
Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene
The interaction of CO with an attapulgite-supported Cu(II)Cl2 catalyst has been examined in a micro-reactor arrangement. CO exposure to the dried, as-received catalyst at elevated temperatures leads to the formation of CO2 as the only identifiable product. However, phosgene production can be induced by a catalyst pre-treatment where the supported Cu(II)Cl2 sample is exposed to a diluted stream of chlorine. Subsequent CO exposure at ~ 370°C then leads to phosgene production. In order to investigate the origins of this atypical set of reaction characteristics, a series of x-ray absorption experiments were performed that were supplemented by DFT calculations. XANES measurements establish that at the elevated temperatures connected with phosgene formation, the catalyst is comprised of Cu+ and a small amount of Cu2+. Moreover, the data show that unique to the chlorine pre-treated sample, CO exposure at elevated temperature results in a short-lived oxidation of the copper. On the basis of calculated CO adsorption energies, DFT calculations indicate that a mixed Cu+/Cu2+ catalyst is required to support CO chemisorption
The application of quasi-elastic neutron scattering to investigate hydrogen diffusion in an iron-based Fischer-Tropsch synthesis catalyst
Sasol Ltd., (PGRS-3) the University of Glasgow and the Engineering and Physical Sciences Research Council (EP/P505534/1) are thanked for the provision of postgraduate studentship (ALD). The STFC Rutherford Appleton Laboratory is thanked for access to neutron beam facilities (RB1720188) [26]. The Royal Society are thanked for the provision of an Industrial Fellowship (PBW).Iron-based Fischer–Tropsch synthesis (FTS) catalysts evolve in situ on exposure to synthesis gas (CO & H2) forming a mixture of iron oxides, iron carbides and carbonaceous deposits. Recently, the application of inelastic neutron scattering has shown the progressive formation of a hydrocarbonaceous overlayer during this catalyst conditioning period. The evolving nature of the catalyst alters the proportion of phases present within the catalyst, which may influence the transport of hydrogen within the reaction system. Preliminary quasi-elastic neutron scattering (QENS) measurements are used to investigate hydrogen diffusion within an un-promoted iron FTS catalyst that has experienced varying levels of time-on-stream (0, 12 and 24 h) of ambient pressure CO hydrogenation at 623 K. Measurements on the catalyst samples in the absence of hydrogen show the unreacted sample (t = 0 h) to exhibit little increase in motion over the temperature range studied, whereas the t = 12 and 24 h samples exhibit a pronounced change in motion with temperature. The contrast is attributed to the presence of the afore-mentioned hydrocarbonaceous overlayer. Measurements on the samples in the presence of liquid hydrogen show hydrogen diffusional characteristics to be modified as a function of the catalyst conditioning process but, due to the complexity of the evolving catalyst matrix, the hydrogen motion cannot be attributed to a particular phase or component of the catalyst. Problems in the use of hydrogen as a probe molecule in this instance are briefly considered. Coincident neutron diffraction studies undertaken alongside the QENS measurements confirm the transition from hematite pre-catalyst to that of Hägg carbide during the course of extended times-on-stream.Publisher PDFPeer reviewe
Studies of propene conversion over H-ZSM-5 demonstrate the importance of propene as an intermediate in methanol-to-hydrocarbons chemistry
Funding Information: Johnson Matthey plc. is thanked for supplying the ZSM-5 zeolite and for financial support through the provision of industrial CASE studentships in partnership with the EPSRC (APH (EP/P510506/1), AZ (EP/N509176/1)). Experiments at the ISIS Neutron and Muon Source were made possible by a beam time allocation from the Science and Technologies Facilities Council. 53 The resources and support provided by the UK Catalysis Hubviamembership of the UK Catalysis Hub consortium and funded by EPSRC grants EP/R026815/1 and EP/R026939/1 are gratefully acknowledged. This research has been performed with the use of facilities and equipment at the Research Complex at Harwell; the authors are grateful to the Research Complex for this access and support.Peer reviewedPublisher PD
The Methyl Torsion in Unsaturated Compounds
The STFC Rutherford Appleton Laboratory is thanked for funding and access to neutron beam facilities. Computing resources (time on the SCARF compute cluster for the CASTEP calculations) was provided by STFC’s e-Science facility. Dr John Tomkinson (ISIS) is thanked for generously providing the INS spectra of the toluene isotopomers. A.Z. and A.P.H. would like to thank Johnson Matthey plc. For financial support through the provision of industrial CASE studentships in partnership with the EPSRC. The UK Catalysis Hub is kindly thanked for resources and support provided via our membership of the UK Catalysis Hub Consortium and funded by EPSRC grant: EP/R026939/1, EP/R026815/1, EP/R026645/1, EP/R027129/1 or EP/M013219/1(biocatalysis).Peer reviewedPublisher PD
Onset of propene oligomerization reactivity in ZSM-5 studied by inelastic neutron scattering spectroscopy
The techniques of quasi-elastic and inelastic neutron scattering (QENS and INS) are applied to investigate the oligomerization of propene over a ZSM-5 zeolite. Investigations are performed at low temperatures, allowing identification of the onset of the oligomerization reaction and observation of the low-energy spectral changes due to intermediate formation that are difficult to observe by optical methods. Oligomerization proceeds via formation of a hydrogen-bonded precursor by an interaction of the propene with an internal acid site followed by protonation and chain growth with protonation being the rate-limiting step. The use of quasi-elastic neutron scattering to observe changes in system mobility with temperature via the elastic window scan technique allows identification of the active temperature range where catalyst activity commences and permits targeting of the more time-consuming INS investigations to conditions of interest. From examination of the product’s spectrum, the structure of the resulting oligomer is deduced to be primarily linear
Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture
It has been postulated that bacteria attached to the surface of prosthetic hip joints can cause localised inflammation, resulting in failure of the replacement joint. However, diagnosis of infection is difficult with traditional microbiological culture methods, and evidence exists that highly fastidious or non-cultivable organisms have a role in implant infections. The purpose of this study was to use culture and culture-independent methods to detect the bacteria present on the surface of prosthetic hip joints removed during revision arthroplasties. Ten consecutive revisions were performed by two surgeons, which were all clinically and radiologically loose. Five of the hip replacement revision surgeries were performed because of clinical infections and five because of aseptic loosening. Preoperative and perioperative specimens were obtained from each patient and subjected to routine microbiological culture. The prostheses removed from each patient were subjected to mild ultrasonication to dislodge adherent bacteria, followed by aerobic and anaerobic microbiological culture. Bacterial DNA was extracted from each sonicate and the 16S rRNA gene was amplified with the universal primer pair 27f/1387r. All 10 specimens were positive for the presence of bacteria by both culture and PCR. PCR products were then cloned, organised into groups by RFLP analysis and one clone from each group was sequenced. Bacteria were identified by comparison of the 16S rRNA gene sequences obtained with those deposited in public access sequence databases. A total of 512 clones were analysed by RFLP analysis, of which 118 were sequenced. Culture methods identified species from the genera Leifsonia (54.3%), Staphylococcus (21.7%), Proteus (8.7%), Brevundimonas (6.5%), Salibacillus (4.3%), Methylobacterium (2.2%) and Zimmermannella (2.2%). Molecular detection methods identified a more diverse microflora. The predominant genus detected was Lysobacter, representing 312 (60.9%) of 512 clones analysed. In all, 28 phylotypes were identified: Lysobacter enzymogenes was the most abundant phylotype (31.4%), followed by Lysobacter sp. C3 (28.3%), gamma proteobacterium N4-7 (6.6%), Methylobacterium SM4 (4.7%) and Staphylococcus epidermidis (4.7%); 36 clones (7.0%) represented uncultivable phylotypes. We conclude that a diverse range of bacterial species are found within biofilms on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties
New Spectroscopic Insight into the Deactivation of a ZSM-5 Methanol-to-Hydrocarbons Catalyst
Funding Information: Johnson Matthey plc. is thanked for supplying the ZSM‐5 zeolite and for financial support through the provision of industrial CASE studentships in partnership with the EPSRC (APH (EP/P510506/1), AZ (EP/N509176/1)). Experiments at the ISIS Neutron and Muon Source were made possible by a beam time allocation from the Science and Technologies Facilities Council. The resources and support provided by the UK Catalysis Hub membership of the UK Catalysis Hub consortium and funded by EPSRC grants EP/R026815/1 and EP/R026939/1 are gratefully acknowledged. This research has been performed with the use of facilities and equipment at the Research Complex at Harwell; the authors are grateful to the Research Complex for this access and support. Dr Andrea Sauerwein and Dr Jonathan Bradley (Johnson Matthey) are thanked for their help in acquiring the Si and Al NMR spectra using the Bruker Avance Neo spectrometer.Peer reviewedPublisher PD
Investigation of the dynamics of 1-octene adsorption at 293 K in a ZSM-5 catalyst by inelastic and quasielastic neutron scattering
The properties of 1-octene adsorbed in zeolite ZSM-5 at 293 K are studied by means of inelastic and quasielastic neutron scattering (INS and QENS) in order to investigate interactions relevant to the zeolite solid acid catalysis of fluidised catalytic cracking reactions. The INS spectrum is compared to that recorded for the solid alkene and reveals significant changes of bonding on adsorption at ambient temperatures; the changes are attributed to the oligomerization of the adsorbed 1-octene to form a medium chain n-alkane or n-alkane cation. QENS analysis shows that these oligomers are immobilised within the zeolite pore structure but a temperature-dependant fraction is able to rotate around their long axis within the pore channels
- …