78 research outputs found
Segregation and charge-density-wave order in the spinless Falicov-Kimball model
The spinless Falicov-Kimball model is solved exactly in the limit of
infinite-dimensions on both the hypercubic and Bethe lattices. The competition
between segregation, which is present for large U, and charge-density-wave
order, which is prevalent at moderate U, is examined in detail. We find a rich
phase diagram which displays both of these phases. The model also shows
nonanalytic behavior in the charge-density-wave transition temperature when U
is large enough to generate a correlation-induced gap in the single-particle
density of states.Comment: 10 pages, 10 figure
Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model
The simplest statistical-mechanical model of crystalline formation (or alloy
formation) that includes electronic degrees of freedom is solved exactly in the
limit of large spatial dimensions and infinite interaction strength. The
solutions contain both second-order phase transitions and first-order phase
transitions (that involve phase-separation or segregation) which are likely to
illustrate the basic physics behind the static charge-stripe ordering in
cuprate systems. In addition, we find the spinodal-decomposition temperature
satisfies an approximate scaling law.Comment: 19 pages and 10 figure
Phase separation due to quantum mechanical correlations
Can phase separation be induced by strong electron correlations? We present a
theorem that affirmatively answers this question in the Falicov-Kimball model
away from half-filling, for any dimension. In the ground state the itinerant
electrons are spatially separated from the classical particles.Comment: 4 pages, 1 figure. Note: text and figure unchanged, title was
misspelle
Phase transitions in the spinless Falicov-Kimball model with correlated hopping
The canonical Monte-Carlo is used to study the phase transitions from the
low-temperature ordered phase to the high-temperature disordered phase in the
two-dimensional Falicov-Kimball model with correlated hopping. As the
low-temperature ordered phase we consider the chessboard phase, the axial
striped phase and the segregated phase. It is shown that all three phases
persist also at finite temperatures (up to the critical temperature )
and that the phase transition at the critical point is of the first order for
the chessboard and axial striped phase and of the second order for the
segregated phase. In addition, it is found that the critical temperature is
reduced with the increasing amplitude of correlated hopping in the
chessboard phase and it is strongly enhanced by in the axial striped and
segregated phase.Comment: 17 pages, 6 figure
Discovery of Molecular DNA Methylation-Based Biomarkers through Genome-Wide Analysis of Response Patterns to BCG for Bladder Cancer
Background: Bacillus Calmette-Guérin (BCG) immunotherapy, the standard adjuvant intravesical therapy for some intermediate and most high-risk non-muscle invasive bladder cancers (NMIBCs), suffers from a heterogenous response rate. Molecular markers to help guide responses are scarce and currently not used in the clinical setting. Methods: To identify novel biomarkers and pathways involved in response to BCG immunotherapy, we performed a genome-wide DNA methylation analysis of NMIBCs before BCG therapy. Genome-wide DNA methylation profiles of DNA isolated from tumors of 26 BCG responders and 27 failures were obtained using the Infinium MethylationEPIC BeadChip. Results: Distinct DNA methylation patterns were found by genome-wide analysis in the two groups. Differentially methylated CpG sites were predominantly located in gene promoters and gene bodies associated with bacterial invasion of epithelial cells, chemokine signaling, endocytosis, and focal adhesion. In total, 40 genomic regions with a significant difference in methylation between responders and failures were detected. The differential methylation state of six of these regions, localized in the promoters of the genes GPR158, KLF8, C12orf42, WDR44, FLT1, and CHST11, were internally validated by bisulfite-sequencing. GPR158 promoter hypermethylation was the best predictor of BCG failure with an AUC of 0.809 (p-value < 0.001). Conclusions: Tumors from BCG responders and BCG failures harbor distinct DNA methylation profiles. Differentially methylated DNA regions were detected in genes related to pathways involved in bacterial invasion of cells or focal adhesion. We identified candidate DNA methylation biomarkers that may help to predict patient prognosis after external validation in larger, well-designed cohorts
Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α
Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart
Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone
<p>Abstract</p> <p>Background</p> <p>All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats.</p> <p>Methods</p> <p>Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied.</p> <p>Results</p> <p>The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1.</p> <p>Conclusion</p> <p>We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation.</p
The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats
<p>Abstract</p> <p>Background</p> <p>Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.</p> <p>Methods</p> <p>Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.</p> <p>Results</p> <p>Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.</p> <p>Conclusions</p> <p>The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.</p
Exact solution of the Falicov-Kimball model with dynamical mean-field theory
The Falicov-Kimball model was introduced in 1969 as a statistical model for
metal-insulator transitions; it includes itinerant and localized electrons that
mutually interact with a local Coulomb interaction and is the simplest model of
electron correlations. It can be solved exactly with dynamical mean-field
theory in the limit of large spatial dimensions which provides an interesting
benchmark for the physics of locally correlated systems. In this review, we
develop the formalism for solving the Falicov-Kimball model from a
path-integral perspective, and provide a number of expressions for single and
two-particle properties. We examine many important theoretical results that
show the absence of fermi-liquid features and provide a detailed description of
the static and dynamic correlation functions and of transport properties. The
parameter space is rich and one finds a variety of many-body features like
metal-insulator transitions, classical valence fluctuating transitions,
metamagnetic transitions, charge density wave order-disorder transitions, and
phase separation. At the same time, a number of experimental systems have been
discovered that show anomalies related to Falicov-Kimball physics [including
YbInCu4, EuNi2(Si[1-x]Gex)2, NiI2 and TaxN].Comment: 51 pages, 40 figures, submitted to Reviews of Modern Physic
Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver
Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator
- …