8,654 research outputs found
Interpretations of the Accelerating Universe
It is generally argued that the present cosmological observations support the
accelerating models of the universe, as driven by the cosmological constant or
`dark energy'. We argue here that an alternative model of the universe is
possible which explains the current observations of the universe. We
demonstrate this with a reinterpretation of the magnitude-redshift relation for
Type Ia supernovae, since this was the test that gave a spurt to the current
trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a
paragraph on the interpretation of the CMB anisotropy in the QSSC added in
conclusion, general results unchanged. To appear in the October 2002 issue of
the "Publications of the Astronmical Society of the Pacific
Optimization of interface layers in the design of ceramic fiber reinforced metal matrix composites
The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion (CTE) of fiber and matrix was investigated. It was found that the performance of the layer can be defined by the product of the CTE and the thickness, and that a compensating layer with a sufficiently high CTE can reduce the thermal stresses in the matrix significantly. A practical procedure offering a window of candidate layer materials is proposed
Phase separation in coupled chaotic maps on fractal networks
The phase ordering dynamics of coupled chaotic maps on fractal networks are
investigated. The statistical properties of the systems are characterized by
means of the persistence probability of equivalent spin variables that define
the phases. The persistence saturates and phase domains freeze for all values
of the coupling parameter as a consequence of the fractal structure of the
networks, in contrast to the phase transition behavior previously observed in
regular Euclidean lattices. Several discontinuities and other features found in
the saturation persistence curve as a function of the coupling are explained in
terms of changes of stability of local phase configurations on the fractals.Comment: (4 pages, 4 Figs, Submitted to PRE
Relativistic Hydrodynamics around Black Holes and Horizon Adapted Coordinate Systems
Despite the fact that the Schwarzschild and Kerr solutions for the Einstein
equations, when written in standard Schwarzschild and Boyer-Lindquist
coordinates, present coordinate singularities, all numerical studies of
accretion flows onto collapsed objects have been widely using them over the
years. This approach introduces conceptual and practical complications in
places where a smooth solution should be guaranteed, i.e., at the gravitational
radius. In the present paper, we propose an alternative way of solving the
general relativistic hydrodynamic equations in background (fixed) black hole
spacetimes. We identify classes of coordinates in which the (possibly rotating)
black hole metric is free of coordinate singularities at the horizon,
independent of time, and admits a spacelike decomposition. In the spherically
symmetric, non-rotating case, we re-derive exact solutions for dust and perfect
fluid accretion in Eddington-Finkelstein coordinates, and compare with
numerical hydrodynamic integrations. We perform representative axisymmetric
computations. These demonstrations suggest that the use of those coordinate
systems carries significant improvements over the standard approach, especially
for higher dimensional studies.Comment: 10 pages, 4 postscript figures, accepted for publication in Phys.
Rev.
Inhomogeneous Dust Collapse in 5D Einstein-Gauss-Bonnet Gravity
We consider a Lemaitre - Tolman - Bondi type space-time in Einstein gravity
with the Gauss-Bonnet combination of quadratic curvature terms, and present
exact solution in closed form. It turns out that the presence of the coupling
constant of the Gauss-Bonnet terms alpha > 0 completely changes the causal
structure of the singularities from the analogous general relativistic case.
The gravitational collapse of inhomogeneous dust in the five-dimensional
Gauss-Bonnet extended Einstein equations leads to formation of a massive, but
weak, timelike singularity which is forbidden in general relativity.
Interestingly, this is a counterexample to three conjecture viz. cosmic
censorship conjecture, hoop conjecture and Seifert's conjecture.Comment: 8 Latex Pages, 2 EPS figure
Hybrid III-V/Silicon photonic circuits embedding generation and routing of entangled photon pairs
The demand for integrated photonic chips combining the generation and
manipulation of quantum states of light is steadily increasing, driven by the
need for compact and scalable platforms for quantum information technologies.
While photonic circuits with diverse functionalities are being developed in
different single material platforms, it has become crucial to realize hybrid
photonic circuits that harness the advantages of multiple materials while
mitigating their respective weaknesses, resulting in enhanced capabilities.
Here, we demonstrate a hybrid III-V/Silicon quantum photonic device combining
the strong second-order nonlinearity and compliance with electrical pumping of
the III-V semiconductor platform with the high maturity and CMOS compatibility
of the silicon photonic platform. Our device embeds the spontaneous parametric
down-conversion (SPDC) of photon pairs into an AlGaAs source and their
subsequent routing to a silicon-on-insulator circuitry, within an evanescent
coupling scheme managing both polarization states. This enables the on-chip
generation of broadband telecom photons by type 0 and type 2 SPDC from the
hybrid device, at room temperature and with internal pair generation rates
exceeding for both types, while the pump beam is strongly
rejected. Two-photon interference with 92% visibility (and up to 99% upon 5 nm
spectral filtering) proves the high energy-time entanglement quality
characterizing the produced quantum state, thereby enabling a wide range of
quantum information applications on-chip, within an hybrid architecture merging
the assets of two mature and highly complementary platforms in view of
out-of-the-lab deployment of quantum technologies
Longitudinal spin transport in diluted magnetic semiconductor superlattices: the effect of the giant Zeeman splitting
Longitudinal spin transport in diluted magnetic semiconductor superlattices
is investigated theoretically. The longitudinal magnetoconductivity (MC) in
such systems exhibits an oscillating behavior as function of an external
magnetic field. In the weak magnetic field region the giant Zeeman splitting
plays a dominant role which leads to a large negative magnetoconductivity. In
the strong magnetic field region the MC exhibits deep dips with increasing
magnetic field. The oscillating behavior is attributed to the interplay between
the discrete Landau levels and the Fermi surface. The decrease of the MC at low
magnetic field is caused by the exchange interaction between the electron
in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.
Yield stress, heterogeneities and activated processes in soft glassy materials
The rheological behavior of soft glassy materials basically results from the
interplay between shearing forces and an intrinsic slow dynamics. This
competition can be described by a microscopic theory, which can be viewed as a
nonequilibrium schematic mode-coupling theory. This statistical mechanics
approach to rheology results in a series of detailed theoretical predictions,
some of which still awaiting for their experimental verification. We present
new, preliminary, results about the description of yield stress, flow
heterogeneities and activated processes within this theoretical framework.Comment: Paper presented at "III Workshop on Non Equilibrium Phenomena...",
Pisa 22-27 Sep. 200
Is Vtb=1 ?
The strongest constraint on Vtb presently comes from the 3 x 3 unitarity of
the CKM matrix, which fixes Vtb to be very close to one. If the unitarity is
relaxed, current information from top production at Tevatron still leaves open
the possibility that Vtb is sizably smaller than one. In minimal extensions of
the standard model with extra heavy quarks, the unitarity constraints are much
weaker and the EW precision parameters entail the strongest bounds on Vtb. We
discuss the experimental perspectives of discovering and identifying such new
physics models at the Tevatron and the LHC, through a precise measurement of
Vtb from the single top cross sections and by the study of processes where the
extra heavy quarks are produced.Comment: 19 pages, 8 figure
Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited
This report is a review of Darwin's classical theory of bodily tides in which
we present the analytical expressions for the orbital and rotational evolution
of the bodies and for the energy dissipation rates due to their tidal
interaction. General formulas are given which do not depend on any assumption
linking the tidal lags to the frequencies of the corresponding tidal waves
(except that equal frequency harmonics are assumed to span equal lags).
Emphasis is given to the cases of companions having reached one of the two
possible final states: (1) the super-synchronous stationary rotation resulting
from the vanishing of the average tidal torque; (2) the capture into a 1:1
spin-orbit resonance (true synchronization). In these cases, the energy
dissipation is controlled by the tidal harmonic with period equal to the
orbital period (instead of the semi-diurnal tide) and the singularity due to
the vanishing of the geometric phase lag does not exist. It is also shown that
the true synchronization with non-zero eccentricity is only possible if an
extra torque exists opposite to the tidal torque. The theory is developed
assuming that this additional torque is produced by an equatorial permanent
asymmetry in the companion. The results are model-dependent and the theory is
developed only to the second degree in eccentricity and inclination
(obliquity). It can easily be extended to higher orders, but formal accuracy
will not be a real improvement as long as the physics of the processes leading
to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo
- …