107 research outputs found

    Improving the Accuracy of Industrial Robots by offline Compensation of Joints Errors

    Get PDF
    The use of industrial robots in many fields of industry like prototyping, pre-machining and end milling is limited because of their poor accuracy. Robot joints are mainly responsible for this poor accuracy. The flexibility of robots joints and the kinematic errors in the transmission systems produce a significant error of position in the level of the end-effector. This paper presents these two types of joint errors. Identification methods are presented with experimental validation on a 6 axes industrial robot, STAUBLI RX 170 BH. An offline correction method used to improve the accuracy of this robot is validated experimentally

    La mesure des angles au BNM-LNE : création d'une nouvelle référence de mesure angulaire

    Get PDF
    The object of this article is to present the angular reference plate developed by the BNM-LNE. After having presented the angular standards we draw the purposes to reach for an angular reference instrument. The principle of two encoders' errors elimination is presented with the solution carried out to free itself from under sampling defaults inherent to this measuring principle. Presentation of the assessment of uncertainties and its result of a standard uncertainty of ± 0.04" for the measurement of angular polygons are validated by the participation at the comparative survey EUROMET 37

    CALIBRATION OF CAPACITIVE SENSORS AND ELECTRONIC LEVELS FOR THE STRAIGHTNESS MEASUREMENTS USING MULTIPROBE METHOD

    Get PDF
    In this work, the straightness length 300 mm measurement under nanometer uncertainty. The proposed methodology represents a process known as propagation using the assumption of small displacement which leads to solving an overdetermined linear system. The experimental studies were carried out on the capacitive sensors and electronic levels. The least squares mathematic method is apply to calculate the optimal solution. This method requires taking into account the uncertainties of the two different types of sensors leads to method of weighted least squares. The first step is to calibrate the sensors and to estimate the effect on the calculated straightness

    Z calibration of the LNE ultra precision coordinate measuring machine

    Get PDF
    The Laboratoire National de MĂ©trologie et d’Essais (LNE) has developed an innovative ultra precision coordinate measuring machine [1,2] traceable to the national length standard. This machine can be equipped with different kinds of sensors and is dedicated to the measurement with nanometer uncertainties of features, standards and in more general way three-dimensional objects. The measuring range is 300 mm x 300 mm x 50 ÎŒm. The objective in term of uncertainty is to reach 30 nm in X and Y directions for a 300 mm displacement and about few nanometers for the 50 ÎŒm vertical displacement. For the geometric calibration of this machine, dedicated procedures have been developed. The present paper will focus more specifically on the one used for the Z calibration

    La mesure des angles au BNM-LNE : création d'une nouvelle référence de mesure angulaire

    Get PDF
    The object of this article is to present the angular reference plate developed by the BNM-LNE. After having presented the angular standards we draw the purposes to reach for an angular reference instrument. The principle of two encoders' errors elimination is presented with the solution carried out to free itself from under sampling defaults inherent to this measuring principle. Presentation of the assessment of uncertainties and its result of a standard uncertainty of ± 0.04" for the measurement of angular polygons are validated by the participation at the comparative survey EUROMET 37

    LNE Activies in Nanometrology: flatness reference calibration algorithm

    Get PDF
    The Laboratoire National de MĂ©trologie et d’Essais (LNE) has developed an innovative ultra precision coordinate measuring machine [LAH07] traceable to the national length standard to measure three-dimensional objects with nanometric uncertainties (figure 1). The measuring range is 300 mm x 300 mm x 50 ÎŒm. The objective in term of uncertainty is to reach 30 nm in X and Y directions for a displacement of 300 mm and about few nanometers for a vertical displacement of 50 ÎŒm. On this machine, we use four capacitive sensors to measure the position along z direction. These sensors target the flat surface of cylinders (300 mm diameter) used as flatness references. To measure the shape of these aluminum references with nanometric uncertainties, we propose a measurement method based on a propagation process in which we introduce an angular measurement to compensate the curvature error inherent in this method. The measurement process uses the same sensor technology (capacitive sensor) we use on the machine. This paper presents the measurement method, its validation and the first results

    Contribution à l'amélioration de la rectitude dans l'obtention de produits longs (application aux abouts de rails)

    Get PDF
    Les produits longs se distinguent par une dimension, généralement la longueur plus importante que la hauteur et la largeur, à titre d'exemple les rails de chemin de fer. Ces produits sont obtenus par déformation plastique à chaud puis refroidissement. Au cours du processus de fabrication, l'hétérogénéité du refroidissement et de la déformation plastique induisent un défaut géométrique de rectitude. Pour parachever la rectitude du produit, un redressage à froid est alors nécessaire. Souvent des dresseuses à galets sont utilisées pour corriger la rectitude du centre de produit, cependant, il reste les abouts. Ces derniers sont redressés au moyen d'une presse à partir de l'image de leurs profils obtenus par mesurage optique. La procédure de mesure/redressage est répétée jusqu'à la conformité du produit. Le temps de réalisation est variable, il dépend de l'apprentissage des paramÚtres clés liés à la géométrie et au matériau du produit à redresser. Compte tenu des exigences de plus en plus sévÚres sur la rectitude des produits longs d'une part et une volonté d'augmenter la productivité d'autre part, l'objet de ce travail de recherche consiste à optimiser le procédé de redressage des abouts de produits longs. Dans un premier temps, les déformations élastiques générées au cours du mesurage d'un produit long ont été filtrées. Ensuite, les erreurs des moyens de mesure ont été séparées de la mesure du produit au moyen d'une analyse couplée ce qui a permis une meilleure évaluation de la rectitude du produit. Par ailleurs, en se basant sur l'image du profil du produit, une méthodologie de redressage semi-automatique a été mise en place. Cette derniÚre est essentiellement basée sur une interaction entre la métrologie et la mécanique et représente une contribution à l'automatisation du procédé de redressage des abouts des produits longs.Long workpieces are characterized by one dimension, usually length is larger than the height and width, for example, railway rails. These products are obtained by hot rolling and then cooling. During manufacturing process, heterogeneity of cooling and plastic deformation induced straightness error. In order to correct this geometrical error, cold straightening process is necessary. Usually, straightening machines are used to correct the straightness of the workpiece center however; the ends' sides were still not straightened. Based on the optical measurement profile, these ends are straightened by mechanical press. The measuring/straightening closed loop is repeated until the straightness of the product is conformed. The process time depends on the knowledge of key parameters related to geometry and material of workpiece. The objective of this research work is to optimize straightening process of the ends of long workpieces. As a first step, the elastic deformation generated during the measurement of long workpiece has been filtered. Then, a coupled analysis of measurement was used to separate error of machine measurement from workpiece measurement, which allowed a better assessment of workpiece straightness profile. Furthermore, based on straightness profile, a semi-automatic straightening methodology has been developed. It is essentially based on an interaction between metrology and mechanics and it is a contribution to the automation of straightening process for ends parts of long workpieces.PARIS-Arts et Métiers (751132303) / SudocSudocFranceF

    The New Generation Planetary Population Synthesis (NGPPS) VI. Introducing KOBE: Kepler Observes Bern Exoplanets

    Get PDF
    Context. Observations of exoplanets indicate the existence of several correlations in the architecture of planetary systems. Exoplanets within a system tend to be of similar size and mass, evenly spaced, and are often ordered in size and mass. Small planets are frequently packed in tight configurations, while large planets often have wider orbital spacing. Together, these correlations are called the peas in a pod trends in the architecture of planetary systems. Aims. In this paper these trends are investigated in theoretically simulated planetary systems and compared with observations. Whether these correlations emerge from astrophysical processes or the detection biases of the transit method is examined. Methods. Synthetic planetary system were simulated using the Generation III Bern Model. KOBE, a new computer code, simulates the geometrical limitations of the transit method and applies the detection biases and completeness of the Kepler survey. This allows simulated planetary systems to be compared with observations. Results. The architecture of synthetic planetary systems, observed via KOBE, show the peas in a pod trends in good agreement with observations. These correlations are also present in the theoretical underlying population, from the Bern Model, indicating that these trends are probably of astrophysical origin. Conclusions. The physical processes involved in planet formation are responsible for the emergence of evenly spaced planets with similar sizes and masses. The size–mass similarity trends are primordial and originate from the oligarchic growth of protoplanetary embryos and the uniform growth of planets at early times. Later stages in planet formation allows planets within a system to grow at different rates, thereby decreasing these correlations. The spacing and packing correlations are absent at early times and arise from dynamical interactions

    Dimensional control strategy and products distortions identification

    Get PDF
    Heat treatments could create local or global distortions on workpieces. Finishing operations, often costly, are then necessary to respect the required functional tolerances. In the long term, our objective is to optimize first, steel grade and heat treatment, then to adjust the numerical simulation models. In that way, the heat treatment distortions on C-ring test parts obtained for an ASCOMETAL steel grade, vertically gas quenched are qualified and quantified by a dimensional analysis. In this article, we focus on part measurement and data processing strategies. Then we present an approach to correlate the experimental results with simulations ones
    • 

    corecore