285 research outputs found

    Pair-tunneling resonance in the single-electron transport regime

    Get PDF
    We predict a new electron pair-tunneling (PT) resonance in non-linear transport through quantum dots with positive charging energies exceeding the broadening due to thermal and quantum fluctuations. The PT resonance shows up in the single-electron transport (SET) regime as a peak in the derivative of the non-linear conductance when the electrochemical potential of one electrode matches the average of two subsequent charge addition energies. For a single level quantum dot (Anderson model) we find the analytic peak shape and the dependence on temperature, magnetic field and junction asymmetry and compare with the inelastic cotunneling peak which is of the same order of magnitude. In experimental transport data the PT resonance may be mistaken for a weak SET resonance judging only by the voltage dependence of its position. Our results provide essential clues to avoid such erroneous interpretation of transport spectroscopy data.Comment: 5 pages, 2 figures, published versio

    Non-linear thermoelectrics of molecular junctions with vibrational coupling

    Get PDF
    We present a detailed study of the non-linear thermoelectric properties of a molecular junction, represented by a dissipative Anderson-Holstein model. A single orbital level with strong Coulomb interaction is coupled to a localized vibrational mode and we account for both electron and phonon exchange with both electrodes, investigating how these contribute to the heat and charge transport. We calculate the efficiency and power output of the device operated as a heat to electric power converter and identify the optimal operating conditions, which are found to be qualitatively changed by the presence of the vibrational mode. Based on this study of a generic model system, we discuss the desirable properties of molecular junctions for thermoelectric applications.Comment: 8 pages, 5 figure

    Transport signature of pseudo-Jahn-Teller dynamics in a single-molecule transistor

    Full text link
    We calculate the electronic transport through a molecular dimer, in which an excess electron is delocalized over equivalent monomers, which can be locally distorted. In this system the Born-Oppenheimer approximation breaks down resulting in quantum entanglement of the mechanical and electronic motion. We show that pseudo Jahn-Teller (pJT) dynamics of the molecule gives rise to conductance peaks that indicate this violation. Their magnitude, sign and position sharply depend on the electro-mechanical properties of the molecule, which can be varied in recently developed three-terminal junctions with mechanical control. The predicted effect depends crucially on the degree of intramolecular delocalization of the excess electron, a parameter which is also of fundamental importance in physical chemistry.Comment: 6 pages, 3 figure

    Kinetic Equations for Transport Through Single-Molecule Transistors

    Get PDF
    We present explicit kinetic equations for quantum transport through a general molecular quantum-dot, accounting for all contributions up to 4th order perturbation theory in the tunneling Hamiltonian and the complete molecular density matrix. Such a full treatment describes not only sequential, cotunneling and pair tunneling, but also contains terms contributing to renormalization of the molecular resonances as well as their broadening. Due to the latter all terms in the perturbation expansion are automatically well-defined for any set of system parameters, no divergences occur and no by-hand regularization is required. Additionally we show that, in contrast to 2nd order perturbation theory, in 4th order it is essential to account for quantum coherence between non-degenerate states, entering the theory through the non-diagonal elements of the density matrix. As a first application, we study a single-molecule transistor coupled to a localized vibrational mode (Anderson-Holstein model). We find that cotunneling-assisted sequential tunneling processes involving the vibration give rise to current peaks i.e. negative differential conductance in the Coulomb-blockade regime. Such peaks occur in the cross-over to strong electron-vibration coupling, where inelastic cotunneling competes with Franck-Condon suppressed sequential tunneling, and thereby indicate the strength of the electron-vibration coupling. The peaks depend sensitively on the coupling to a dissipative bath, thus providing also an experimental probe of the Q-factor of the vibrational motion.Comment: 17 pages, 5 figures. Final published version. Some important typos correcte

    Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    Full text link
    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.Comment: Cite as: A. Svilans, et al., Physica E (2015), http://dx.doi.org/10.1016/j.physe.2015.10.00

    Spin-dependent electronic hybridization in a rope of carbon nanotubes

    Get PDF
    We demonstrate single electron addition to different strands of a carbon nanotube rope. Anticrossings of anomalous conductance peaks occur in quantum transport measurements through the parallel quantum dots forming on the individual strands. We determine the magnitude and the sign of the hybridization as well as the Coulomb interaction between the carbon nanotube quantum dots, finding that the bonding states dominate the transport. In a magnetic field the hybridization is shown to be selectively suppressed due to spin effects.Comment: 4 pages, 4 figure

    Using polymer electrolyte gates to set-and-freeze threshold voltage and local potential in nanowire-based devices and thermoelectrics

    Full text link
    We use the strongly temperature-dependent ionic mobility in polymer electrolytes to 'freeze in' specific ionic charge environments around a nanowire using a local wrap-gate geometry. This enables us to set both the threshold voltage for a conventional doped substrate gate and the local disorder potential at temperatures below 200 Kelvin, which we characterize in detail by combining conductance and thermovoltage measurements with modeling. Our results demonstrate that local polymer electrolyte gates are compatible with nanowire thermoelectrics, where they offer the advantage of a very low thermal conductivity, and hold great potential towards setting the optimal operating point for solid-state cooling applications.Comment: Published in Advanced Functional Materials. Includes colour versions of figures and supplementary informatio

    Majorana bound states in a coupled quantum-dot hybrid-nanowire system

    Full text link
    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.Comment: Article and Supplementary Materia

    Probing Transverse Magnetic Anisotropy by Electronic Transport through a Single-Molecule Magnet

    Get PDF
    By means of electronic transport, we study the transverse magnetic anisotropy of an individual Fe4_4 single-molecule magnet (SMM) embedded in a three-terminal junction. In particular, we determine in situ the transverse anisotropy of the molecule from the pronounced intensity modulations of the linear conductance, which are observed as a function of applied magnetic field. The proposed technique works at temperatures exceeding the energy scale of the tunnel splittings of the SMM. We deduce that the transverse anisotropy for a single Fe4_4 molecule captured in a junction is substantially larger than the bulk value.Comment: 18 pages with 16 figures; version as publishe
    corecore