8 research outputs found

    The Plesiobiontic Association of Formica lemani Bondroit with Lasius flavus (Fabricius) (Hymenoptera, Formicidae) in Norway

    Get PDF
    Three compound nests of Formica lemani Bondroit, 1917 and Lasius flavus (Fabricius, 1782) are reported from Lygra, Western Norway. This is the first plesiobiontic relationship reported for F. lemani and the 9th for L. flavus. Behavioural and landscape ecological traits associated with plesiobiosis are discussed

    Bioinformatic analyses of miRNA-mRNA signature during hiPSC differentiation towards insulin-producing cells upon HNF4Îą mutation

    Get PDF
    Mutations in the hepatocyte nuclear factor 4α (HNF4α) gene affect prenatal and postnatal pancreas development, being characterized by insulin-producing β-cell dysfunction. Little is known about the cellular and molecular mechanisms leading to β-cell failure as result of HNF4α mutation. In this study, we compared the miRNA profile of differentiating human induced pluripotent stem cells (hiPSC) derived from HNF4α+/Δ mutation carriers and their family control along the differentiation timeline. Moreover, we associated this regulation with the corresponding transcriptome profile to isolate transcript–miRNA partners deregulated in the mutated cells. This study uncovered a steep difference in the miRNA regulation pattern occurring during the posterior foregut to pancreatic endoderm transition, defining early and late differentiation regulatory windows. The pathway analysis of the miRNAome–transcriptome interactions revealed a likely gradual involvement of HNF4α+/Δ mutation in p53-mediated cell cycle arrest, with consequences for the proliferation potential, survival and cell fate acquisition of the differentiating cells. The present study is based on bioinformatics approaches and we expect that, pending further experimental validation, certain miRNAs deregulated in the HNF4α+/Δ cells would prove useful for therapy

    In vivo hyperglycemia exposure elicits distinct period-dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress

    No full text
    Aim: The loss of insulin‐secreting β‐cells, ultimately characterizing most diabetes forms, demands the development of cell replacement therapies. The common endpoint for all ex vivo strategies is transplantation into diabetic patients. However, the effects of hyperglycaemia environment on the transplanted cells were not yet properly assessed. Thus, the main goal of this study was to characterize global effect of brief and prolonged in vivo hyperglycaemia exposure on the cell fate acquisition and maintenance of transplanted human pancreatic progenitors. Methods: To rigorously study the effect of hyperglycaemia, in vitro differentiated human‐induced pluripotent stem cells (hiPSC)‐derived pancreatic progenitors were xenotransplanted in normoglycaemic and diabetic NSG rat insulin promoter (RIP)‐diphtheria toxin receptor (DTR) mice. The transplants were retrieved after 1‐week or 1‐month exposure to overt hyperglycaemia and analysed by large‐scale microscopy or global proteomics. For this study we pioneer the use of the NSG RIP‐DTR system in the transplantation of hiPSC, making use of its highly reproducible specific and absolute β‐cell ablation property in the absence of inflammation or other organ toxicity. Results: Here we show for the first time that besides the presence of an induced oxidative stress signature, the cell fate and proteome landscape response to hyperglycaemia was different, involving largely different mechanisms, according to the period spent in the hyperglycaemic environment. Surprisingly, brief hyperglycaemia exposure increased the bihormonal cell number by impeding the activity of specific islet lineage determinants. Moreover, it activated antioxidant and inflammation protection mechanisms signatures in the transplanted cells. In contrast, the prolonged exposure was characterized by decreased numbers of hormone + cells, low/absent detoxification signature, augmented production of oxygen reactive species and increased apoptosis. Conclusion: Hyperglycaemia exposure induced distinct, period‐dependent, negative effects on xenotransplanted human pancreatic progenitor, affecting their energy homeostasis, cell fate acquisition and survival

    Chronically elevated exogenous glucose elicits antipodal effects on the proteome signature of differentiating human iPSC-derived pancreatic progenitors

    Get PDF
    The past decade revealed that cell identity changes, such as dedifferentiation or transdifferentiation, accompany the insulin-producing β-cell decay in most diabetes conditions. Mapping and controlling the mechanisms governing these processes is, thus, extremely valuable for managing the disease progression. Extracellular glucose is known to influence cell identity by impacting the redox balance. Here, we use global proteomics and pathway analysis to map the response of differentiating human pancreatic progenitors to chronically increased in vitro glucose levels. We show that exogenous high glucose levels impact different protein subsets in a concentration-dependent manner. In contrast, regardless of concentration, glucose elicits an antipodal effect on the proteome landscape, inducing both beneficial and detrimental changes in regard to achieving the desired islet cell fingerprint. Furthermore, we identified that only a subgroup of these effects and pathways are regulated by changes in redox balance. Our study highlights a complex effect of exogenous glucose on differentiating pancreas progenitors characterized by a distinct proteome signature

    Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling

    No full text
    Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process

    In vivo hyperglycemia exposure elicits distinct period-dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress

    Get PDF
    Aim The loss of insulin‐secreting β‐cells, ultimately characterizing most diabetes forms, demands the development of cell replacement therapies. The common endpoint for all ex vivo strategies is transplantation into diabetic patients. However, the effects of hyperglycaemia environment on the transplanted cells were not yet properly assessed. Thus, the main goal of this study was to characterize global effect of brief and prolonged in vivo hyperglycaemia exposure on the cell fate acquisition and maintenance of transplanted human pancreatic progenitors. Methods To rigorously study the effect of hyperglycaemia, in vitro differentiated human‐induced pluripotent stem cells (hiPSC)‐derived pancreatic progenitors were xenotransplanted in normoglycaemic and diabetic NSG rat insulin promoter (RIP)‐diphtheria toxin receptor (DTR) mice. The transplants were retrieved after 1‐week or 1‐month exposure to overt hyperglycaemia and analysed by large‐scale microscopy or global proteomics. For this study we pioneer the use of the NSG RIP‐DTR system in the transplantation of hiPSC, making use of its highly reproducible specific and absolute β‐cell ablation property in the absence of inflammation or other organ toxicity. Results Here we show for the first time that besides the presence of an induced oxidative stress signature, the cell fate and proteome landscape response to hyperglycaemia was different, involving largely different mechanisms, according to the period spent in the hyperglycaemic environment. Surprisingly, brief hyperglycaemia exposure increased the bihormonal cell number by impeding the activity of specific islet lineage determinants. Moreover, it activated antioxidant and inflammation protection mechanisms signatures in the transplanted cells. In contrast, the prolonged exposure was characterized by decreased numbers of hormone + cells, low/absent detoxification signature, augmented production of oxygen reactive species and increased apoptosis. Conclusion Hyperglycaemia exposure induced distinct, period‐dependent, negative effects on xenotransplanted human pancreatic progenitor, affecting their energy homeostasis, cell fate acquisition and survival

    Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling

    Get PDF
    Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process

    In vivo environment swiftly restricts human pancreatic progenitors toward mono-hormonal identity via a HNF1A/HNF4A mechanism

    Get PDF
    Generating insulin-producing β-cells from human induced pluripotent stem cells is a promising cell replacement therapy for improving or curing insulin-dependent diabetes. The transplantation of end-stages differentiating cells into living hosts was demonstrated to improve β-cell maturation. Nevertheless, the cellular and molecular mechanisms outlining the transplanted cells’ response to the in vivo environment are still to be properly characterized. Here we use global proteomics and large-scale imaging techniques to demultiplex and filter the cellular processes and molecular signatures modulated by the immediate in vivo effect. We show that in vivo exposure swiftly confines in vitro generated human pancreatic progenitors to single hormone expression. The global proteome landscape of the transplanted cells was closer to native human islets, especially in regard to energy metabolism and redox balance. Moreover, our study indicates a possible link between these processes and certain epigenetic regulators involved in cell identity. Pathway analysis predicted HNF1A and HNF4A as key regulators controlling the in vivo islet-promoting response, with experimental evidence suggesting their involvement in confining islet cell fate following xeno-transplantation
    corecore