8 research outputs found
Recommended from our members
Unsupervised Learning for Feature Selection: A Proposed Solution for Botnet Detection in 5G Networks
YesThe world has seen exponential growth in deploying Internet of Things (IoT) devices. In recent years, connected IoT devices have surpassed the number of connected non-IoT devices. The number of IoT devices continues to grow and they are becoming a critical component of the national infrastructure. IoT devices' characteristics and inherent limitations make them attractive targets for hackers and cyber criminals. Botnet attack is one of the serious threats on the Internet today. This article proposes pattern-based feature selection methods as part of a machine learning (ML) based botnet detection system. Specifically, two methods are proposed: the first is based on the most dominant pattern feature values and the second is based on Maximal Frequent Itemset (MFI) mining. The proposed feature selection method uses Gini Impurity (GI) and an unsupervised clustering method to select the most influential features automatically. The evaluation results show that the proposed methods have improved the performance of the detection system. The developed system has a True Positive Rate (TPR) of 100% and a False Positive Rate (FPR) of 0% for best performing models. In addition, the proposed methods reduce the computational cost of the system as evidenced by the detection speed of the system
Machine learning for malware detection in network traffic
Developing advanced and efficient malware detection systems is becoming significant in light of the growing threat landscape in cybersecurity. This work aims to tackle the enduring problem of identifying malware and protecting digital assets from cyber-attacks.
Conventional methods frequently prove ineffective in adjusting to the ever-evolving field of harmful activity. As such, novel approaches that improve precision while simultaneously taking into account the ever-changing landscape of modern cybersecurity problems are needed. To address this problem this research focuses on the detection of malware in network traffic. This work proposes
a machine-learning-based approach for malware detection, with particular attention to the Random Forest (RF), Support Vector Machine (SVM), and Adaboost algorithms. In this paper, the model’s
performance was evaluated using an assessment matrix. Included the Accuracy (AC) for overall performance, Precision (PC) for positive predicted values, Recall Score (RS) for genuine positives, and the F1 Score (SC) for a balanced viewpoint. A performance comparison has been performed and the results reveal that the built model utilizing Adaboost has the best performance. The TPR for the three classifiers performs over 97% and the FPR performs < 4% for each of the classifiers. The created model in this paper has the potential to help organizations or experts anticipate and handle malware. The proposed model can be used to make forecasts and provide management solutions in the network’s everyday operational activities
Recommended from our members
Latent Semantic Analysis and Graph Theory for Alert Correlation: A Proposed Approach for IoT Botnet Detection
YesIn recent times, the proliferation of Internet of Things (IoT) technology has brought a significant shift in the digital transformation of various industries. The enabling technologies have accelerated this adoption. The possibilities unlocked by IoT have been unprecedented, leading to the emergence of smart applications that have been integrated into national infrastructure. However, the popularity of IoT technology has also attracted the attention of adversaries, who have leveraged the inherent limitations of IoT devices to launch sophisticated attacks, including Multi-Stage attacks (MSAs) such as IoT botnet attacks. These attacks have caused significant losses in revenue across industries, amounting to billions of dollars. To address this challenge, this paper proposes a system for IoT botnet detection that comprises two phases. The first phase aims to identify IoT botnet traffic, the input to this phase is the IoT traffic, which is subjected to feature selection and classification model training to distinguish malicious traffic from normal traffic. The second phase analyses the malicious traffic from stage one to identify different botnet attack campaigns. The second stage employs an alert correlation approach that combines the Latent Semantic Analysis (LSA) unsupervised learning and graph theory based techniques. The proposed system was evaluated using a publicly available real IoT traffic dataset and yielded promising results, with a True Positive Rate (TPR) of over 99% and a False Positive Rate (FPR) of 0%.Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia, under Grant RSPD2024R95
Recommended from our members
Multi-stage attack detection: emerging challenges for wireless networks
YesMulti-stage attacks (MSAs) are among the most serious threats in cyberspace today. Criminals target big organisations and government critical infrastructures mainly for financial gain. These attacks are becoming more advanced and stealthier, and thus have capabilities to evade Intrusion Detection Systems (IDSs). As a result, the attack strategies used in the attack render IDSs ineffective, particularly because of new security challenges introduced by some of the key emerging technologies such as 5G wireless networks, cloud computing infrastructure and Internet of Things (IoT), Advanced persistent threats (APTs) and botnet attacks are examples of MSAs, these are serious threats on the Internet. This work analyses recent MSAs, outlines and reveals open issues, challenges and opportunities with existing detection methods.The full-text of this article will be released for public view at the end of the publisher embargo on 03 Jan 2024
Recommended from our members
Sequential Pattern Mining: A Proposed Approach for Intrusion Detection Systems
NoTechnological advancements have played a pivotal role in the rapid
proliferation of the fourth industrial revolution (4IR) through the
deployment of Internet of Things (IoT) devices in large numbers.
COVID-19 caused serious disruptions across many industries with
lockdowns and travel restrictions imposed across the globe. As a
result, conducting business as usual became increasingly untenable,
necessitating the adoption of new approaches in the workplace.
For instance, virtual doctor consultations, remote learning, and
virtual private network (VPN) connections for employees working
from home became more prevalent. This paradigm shift has brought
about positive benefits, however, it has also increased the attack vectors and surfaces, creating lucrative opportunities for cyberattacks.
Consequently, more sophisticated attacks have emerged, including
the Distributed Denial of Service (DDoS) and Ransomware attacks,
which pose a serious threat to businesses and organisations worldwide. This paper proposes a system for detecting malicious activities
in network traffic using sequential pattern mining (SPM) techniques.
The proposed approach utilises SPM as an unsupervised learning
technique to extract intrinsic communication patterns from network traffic, enabling the discovery of rules for detecting malicious
activities and generating security alerts accordingly. By leveraging this approach, businesses and organisations can enhance the
security of their networks, detect malicious activities including
emerging ones, and thus respond proactively to potential threats
Recommended from our members
Machine Learning for Botnet Detection: An Optimized Feature Selection Approach
YesTechnological advancements have been evolving for so long, particularly
Internet of Things (IoT) technology that has seen an increase
in the number of connected devices surpass non IoT connections.
It has unlocked a lot of potential across different organisational
settings from healthcare, transportation, smart cities etc. Unfortunately,
these advancements also mean that cybercriminals are
constantly seeking new ways of exploiting vulnerabilities for malicious
and illegal activities. IoT is a technology that presents a
golden opportunity for botnet attacks that take advantage of a
large number of IoT devices and use them to launch more powerful
and sophisticated attacks such as Distributed Denial of Service
(DDoS) attacks. This calls for more research geared towards the detection
and mitigation of botnet attacks in IoT systems. This paper
proposes a feature selection approach that identifies and removes
less influential features as part of botnet attack detection method.
The feature selection is based on the frequency of occurrence of the
value counts in each of the features with respect to total instances.
The effectiveness of the proposed approach is tested and evaluated
on a standard IoT dataset. The results reveal that the proposed
feature selection approach has improved the performance of the
botnet attack detection method, in terms of True Positive Rate (TPR)
and False Positive Rate (FPR). The proposed methodology provides
100% TPR, 0% FPR and 99.9976% F-score
Recommended from our members
Latent Dirichlet Allocation for the Detection of Multi-Stage Attacks
NoThe rapid shift and increase in remote access to
organisation resources have led to a significant increase in the
number of attack vectors and attack surfaces, which in turn
has motivated the development of newer and more sophisticated
cyber-attacks. Such attacks include Multi-Stage Attacks (MSAs).
In MSAs, the attack is executed through several stages. Classifying malicious traffic into stages to get more information about
the attack life-cycle becomes a challenge. This paper proposes a
malicious traffic clustering approach based on Latent Dirichlet
Allocation (LDA). LDA is a topic modelling approach used in
natural language processing to address similar problems. The
proposed approach is unsupervised learning and therefore will
be beneficial in scenarios where traffic data is not labeled and
analysis needs to be performed. The proposed approach uncovers
intrinsic contexts that relate to different categories of attack
stages in MSAs. These are vital insights needed across different
areas of cybersecurity teams like Incident Response (IR) within
the Security Operations Center (SOC), the insights uncovered
could have a positive impact in ensuring that attacks are detected
at early stages in MSAs. Besides, for IR, these insights help to
understand the attack behavioural patterns and lead to reduced
time in recovery following an incident. The proposed approach is
evaluated on a publicly available MSAs dataset. The performance
results are promising as evidenced by over 99% accuracy in
identified malicious traffic clusters
Recommended from our members
Machine Learning for Malware Detection in Network Traffic
NoDeveloping advanced and efficient malware detection systems is
becoming significant in light of the growing threat landscape in cybersecurity. This work aims to tackle the enduring problem of identifying malware and protecting digital assets from cyber-attacks.
Conventional methods frequently prove ineffective in adjusting
to the ever-evolving field of harmful activity. As such, novel approaches that improve precision while simultaneously taking into
account the ever-changing landscape of modern cybersecurity problems are needed. To address this problem this research focuses on
the detection of malware in network traffic. This work proposes
a machine-learning-based approach for malware detection, with
particular attention to the Random Forest (RF), Support Vector Machine (SVM), and Adaboost algorithms. In this paper, the model’s
performance was evaluated using an assessment matrix. Included
the Accuracy (AC) for overall performance, Precision (PC) for positive predicted values, Recall Score (RS) for genuine positives, and
the F1 Score (SC) for a balanced viewpoint. A performance comparison has been performed and the results reveal that the built model
utilizing Adaboost has the best performance. The TPR for the three
classifiers performs over 97% and the FPR performs < 4% for each of
the classifiers. The created model in this paper has the potential to
help organizations or experts anticipate and handle malware. The
proposed model can be used to make forecasts and provide management solutions in the network’s everyday operational activities