1,195 research outputs found

    Charge Transfer Induced Molecular Hole Doping into Thin Film of Metal-Organic-Frameworks

    Full text link
    Despite the highly porous nature with significantly large surface area, metal organic frameworks (MOFs) can be hardly used in electronic, and optoelectronic devices due to their extremely poor electrical conductivity. Therefore, the study of MOF thin films that require electron transport or conductivity in combination with the everlasting porosity is highly desirable. In the present work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity are synthesized using layer-by-layer and doctor blade coating techniques followed by iodine doping. The as-prepared and doped films are characterized using FE-SEM, EDX, UV/Visible spectroscopy, XPS, current-voltage measurement, photoluminescence spectroscopy, cyclic voltammetry, and incident photon to current efficiency measurements. In addition, the electronic and semiconductor property of the MOF films are characterized using Hall Effect measurement, which reveals that in contrast to the insulator behavior of the as-prepared MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by charge transfer induced hole doping into the frameworks. The observed charge transfer induced hole doping phenomenon is also confirmed by calculating the densities of states of the as-prepared and iodine doped MOFs based on density functional theory. Photoluminescence spectroscopy demonstrate an efficient interfacial charge transfer between TiO2 and iodine doped MOFs, which can be applied to harvest solar radiations.Comment: Main paper (19 pages, 6 figures) and supplementary information (15 pages, 10 figures), accepted in ACS Appl. Materials & Interface

    Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported that nerve injury-induced neuropathic pain is attenuated in toll-like receptor 2 (TLR2) knock-out mice. In these mice, inflammatory gene expression and spinal cord microglia actvation is compromised, whereas the effects in the dorsal root ganglia (DRG) have not been tested. In this study, we investigated the role of TLR2 in inflammatory responses in the DRG after peripheral nerve injury.</p> <p>Results</p> <p>L5 spinal nerve transection injury induced the expression of macrophage-attracting chemokines such as CCL2/MCP-1 and CCL3/MIP-1 and subsequent macrophage infiltration in the DRG of wild-type mice. In TLR2 knock-out mice, however, the induction of chemokine expression and macrophage infiltration following nerve injury were markedly reduced. Similarly, the induction of IL-1β and TNF-ι expression in the DRG by spinal nerve injury was ameliorated in TLR2 knock-out mice. The reduced inflammatory response in the DRG was accompanied by attenuation of nerve injury-induced spontaneous pain hypersensitivity in TLR2 knock-out mice.</p> <p>Conclusions</p> <p>Our data show that TLR2 contributes to nerve injury-induced proinflammatory chemokine/cytokine gene expression and macrophage infiltration in the DRG, which may have relevance in the reduced pain hypersensitivity in TLR2 knock-out mice after spinal nerve injury.</p

    Experimental quantum polarimetry using heralded single photons

    Get PDF
    We perform experimental quantum polarimetry using a heralded single photon to analyze the optical activity of linearly polarized light traversing a chiral medium. Three kinds of estimators are considered to estimate the concentrations of sucrose solutions from measuring the rotation angle of the linear polarization of the output photons. Through repetition of independent and identical measurements performed for each individual scheme and different concentration sucrose solutions, we compare the estimation uncertainty among the three schemes. The results are also compared to classical benchmarks for which a coherent state of light is taken into account. The quantum enhancement in the estimation uncertainty is evaluated and the impact of experimental and technical imperfections is discussed. In this work, we lay out a route for future applications relying on quantum polarimetry
    • …
    corecore