270,723 research outputs found

    Status of Dynamical Coupled-Channel Analysis by Collaboration@EBAC

    Full text link
    The development and results of the Dynamical Coupled-Channels analysis by a collaboration at the Excited Baryon Analysis Center (EBAC) are reported.Comment: 5 pages, 4 figures. Contribution to Eleventh Conference on the Intersections of Particle and Nuclear Physics --- CIPANP 2012, May 28, 2012 - June 3, 2012, St. Petersburg, FL, US

    EBAC-DCC Analysis of World Data of pi N, gamma N, and N(e,e') Reactions

    Full text link
    The development, results, and prospect of the Dynamical Coupled-Channels analysis at Excited Baryon Analysis Center (EBAC-DCC) are reported.Comment: 6 pages, 7 figures. Contribution to the proceedings of the 8th International Workshop on the Physics of Excited Nucleons (NSTAR2011), Newport News, VA, USA, May 17-20, 201

    Characterization of the asymptotic distribution of semiparametric M-estimators

    Get PDF
    This paper develops a concrete formula for the asymptotic distribution of two-step, possibly non-smooth semiparametric M-estimators under general misspecification. Our regularity conditions are relatively straightforward to verify and also weaker than those available in the literature. The first-stage nonparametric estimation may depend on finite dimensional parameters. We characterize: (1) conditions under which the first-stage estimation of nonparametric components do not affect the asymptotic distribution, (2) conditions under which the asymptotic distribution is affected by the derivatives of the first-stage nonparametric estimator with respect to the finite-dimensional parameters, and (3) conditions under which one can allow non-smooth objective functions. Our framework is illustrated by applying it to three examples: (1) profiled estimation of a single index quantile regression model, (2) semiparametric least squares estimation under model misspecification, and (3) a smoothed matching estimator. © 2010 Elsevier B.V. All rights reserved

    Studies in optical parallel processing

    Get PDF
    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC
    corecore