8,687 research outputs found

    A luminous blue kilonova and an off-axis jet from a compact binary merger at z=0.1341

    Get PDF
    The recent discovery of a faint gamma-ray burst (GRB) coincident with the gravitational wave (GW) event GW 170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nearby Universe. These events could be routinely detected by existing gamma-ray monitors, yet previous observations failed to identify them without the aid of GW triggers. Here we show that GRB150101B was an analogue of GRB170817A located at a cosmological distance. GRB 150101B was a faint short duration GRB characterized by a bright optical counterpart and a long-lived X-ray afterglow. These properties are unusual for standard short GRBs and are instead consistent with an explosion viewed off-axis: the optical light is produced by a luminous kilonova component, while the observed X-rays trace the GRB afterglow viewed at an angle of ~13 degrees. Our findings suggest that these properties could be common among future electromagnetic counterparts of GW sources.Comment: 28 pages, 8 figures, 2 tables. Accepted for publicatio

    Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes

    Get PDF
    We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline Gdx Zn 1−xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≀25 mTorr) and low Gd concentrations (x ≀ 0.009). These films feature strong FM (10 ΌB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films

    Hydrophilic titanium surface‐induced macrophage modulation promotes pro‐osteogenic signalling

    Get PDF
    Objectives: As biomaterial‐induced modulation of mediators of the immune response may be a potential therapeutic approach to enhance wound healing events, the aim of this study was to delineate the effects of titanium surface modification on macrophage phenotype and function. Material and methods: Rodent bone marrow‐derived macrophages were polarized into M1 and M2 phenotypes and cultured on micro‐rough (SLA) and hydrophilic modified SLA (modSLA) titanium discs. Macrophage phenotype and cytokine secretion were subsequently assessed by immunostaining and ELISA, respectively. Osteoblast gene expression in response to culture in the M1 and M2 macrophage conditioned media was also evaluated over 7 days by RT‐PCR. Results: M1 macrophage culture on the modSLA surface promoted an M2‐like phenotype as demonstrated by marked CD163 protein expression, Arg1 gene expression and the secretion of cytokines that significantly upregulated in osteoblasts the expression of genes associated with the TGF‐ß/BMP signalling pathway and osteogenesis. In comparison, M2 macrophage culture on SLA surface promoted an inflammatory phenotype and cytokine profile that was not conducive for osteogenic gene expression. Conclusions: Macrophages are able to alter or switch their phenotype according to the signals received from the biomaterial surface. A hydrophilic micro‐rough titanium surface topography elicits a macrophage phenotype associated with reduced inflammation and enhanced pro‐osteogenic signalling

    Gravitational Waves from a Compact Star in a Circular, Inspiral Orbit, in the Equatorial Plane of a Massive, Spinning Black Hole, as Observed by LISA

    Get PDF
    Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco)---more particularly, on orbits for which the angular velocity Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the Teukolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for representative values of the hole's mass M and spin a and the inspiraling object's mass \mu, with the distance to Earth chosen to be r_o = 1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and \mu. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed wavesComment: Physical Review D, in press; 21 pages, 9 figures, 10 tables it is present in the RevTeX fil

    Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates

    Get PDF
    Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates

    On rotational excitations and axial deformations of BPS monopoles and Julia-Zee dyons

    Full text link
    It is shown that Julia-Zee dyons do not admit slowly rotating excitations. This is achieved by investigating the complete set of stationary excitations which can give rise to non-vanishing angular momentum. The relevant zero modes are parametrized in a gauge invariant way and analyzed by means of a harmonic decomposition. Since general arguments show that the solutions to the linearized Bogomol'nyi equations cannot contribute to the angular momentum, the relevant modes are governed by a set of electric and a set of non self-dual magnetic perturbation equations. The absence of axial dipole deformations is also established.Comment: 22 pages, Revtex, no figure

    Tuning Between Quenching and Energy Transfer in DNA-Templated Heterodimer Aggregates

    Get PDF
    Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble “transverse” and “adjacent” heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∌31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∌420 fs) is followed by Cy5.5 excited-state relaxation (∌700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation

    Variability in bioreactivity linked to changes in size and zeta potential of diesel exhaust particles in human immune cells

    Get PDF
    Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO(2)) nanoparticles have been used in Europe as diesel fuel additives (Enviroxℱ). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO(2) (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1ÎČ, TNF-α, IL-6, IFN-Îł, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (−37 to −41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties
    • 

    corecore