4 research outputs found

    Analysis of clinically relevant somatic mutations in high-risk head and neck cutaneous squamous cell carcinoma

    Get PDF
    Cutaneous squamous cell carcinoma is the second most prevalent malignancy, most frequently occurring in the head and neck (head and neck cutaneous squamous cell carcinoma). Treatment of locally advanced or metastatic disease is associated with functional morbidity and disfigurement. Underlying genetic mechanisms are poorly understood. Targeted sequencing of 48 clinically relevant genes was performed on DNA extracted from formalinfixed and paraffin-embedded high-risk primary head and neck cutaneous squamous cell carcinomas that remained non-metastatic at minimum follow-up of 24 months. Associations of somatic mutations with clinicopathologic characteristics were evaluated and compared with those described in the literature for metastatic disease. Alterations in 44 cancer-associated genes were identified. TP53 was mutated in 100% of cases; APC, ATM, ERBB4, GNAQ, KIT, RB1 and ABL1 were altered in 60% of cases. FGFR2 mutations (40%) were exclusively seen in patients with perineural invasion. MLH1 mutations were exclusively seen in the two younger patients (\u3c45 \u3eyears). Lower incidences of NOTCH1 mutations were observed compared with that described in metastatic head and neck cutaneous squamous cell carcinoma in the literature. Somatic mutations susceptible to EGFR inhibitors, and other small molecular targeted therapeutics were seen in 60% of cases. This study provides insights into somatic mutations in non-metastatic, high-risk head and neck cutaneous squamous cell carcinoma and identifies potential therapeutic targets. Alterations in FGFR2 and NOTCH1 may have roles in local and distant disease progression

    Is high-risk cutaneous squamous cell carcinoma of the head and neck a suitable candidate for current targeted therapies?

    No full text
    Objective: Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy, most frequently affecting the head and neck. Treatment often requires surgery and can have significant functional morbidity. Research into disease pathogenesis and second line medical management of cSCC is limited. We assess genetic mutations in high-risk, primary head and neck cutaneous squamous cell carcinomas (HNcSCC) that may hinder or be beneficial for use of targeted therapy in disease management. Methods: Genetic alterations and variant allele frequencies (VAFs) were analysed using a clinically relevant 48 gene panel in 10 primary high-risk non-metastatic treatment-naïve HNcSCC to evaluate applicability of targeted therapeutics. Variants present at all VAFs were evaluated for pathogenicity. Somatic mutation patterns of individual tumours were analysed. Results: High-risk HNcSCC showed a high proportion (82%) of C to T transitions in keeping with ultraviolet-mediated damage. There was significant intratumour genetic heterogeneity in this cohort (MATH scores 20-89) with the two patients 22% in all cases, and mutations with highest VAF were observed in tumour suppressor genes in 80%. 70% of cases demonstrated at least one mutation associated with treatment resistance (KIT S821F, KIT T670I, RAS mutations at codons 12 and 13). Conclusion: We demonstrate high proportion tumour suppressor loss of function mutations, high intratumour genetic heterogeneity, and presence of well recognised resistance mutations in treatment naïve primary HNcSCC. These factors pose challenges for successful utilisation of targeted therapies

    Analysis of clinically relevant somatic mutations in high-risk head and neck cutaneous squamous cell carcinoma

    No full text
    Cutaneous squamous cell carcinoma is the second most prevalent malignancy, most frequently occurring in the head and neck (head and neck cutaneous squamous cell carcinoma). Treatment of locally advanced or metastatic disease is associated with functional morbidity and disfigurement. Underlying genetic mechanisms are poorly understood. Targeted sequencing of 48 clinically relevant genes was performed on DNA extracted from formalinfixed and paraffin-embedded high-risk primary head and neck cutaneous squamous cell carcinomas that remained non-metastatic at minimum follow-up of 24 months. Associations of somatic mutations with clinicopathologic characteristics were evaluated and compared with those described in the literature for metastatic disease. Alterations in 44 cancer-associated genes were identified. TP53 was mutated in 100% of cases; APC, ATM, ERBB4, GNAQ, KIT, RB1 and ABL1 were altered in 60% of cases. FGFR2 mutations (40%) were exclusively seen in patients with perineural invasion. MLH1 mutations were exclusively seen in the two younger patients (o45 years). Lower incidences of NOTCH1 mutations were observed compared with that described in metastatic head and neck cutaneous squamous cell carcinoma in the literature. Somatic mutations susceptible to EGFR inhibitors, and other small molecular targeted therapeutics were seen in 60% of cases. This study provides insights into somatic mutations in non-metastatic, high-risk head and neck cutaneous squamous cell carcinoma and identifies potential therapeutic targets. Alterations in FGFR2 and NOTCH1 may have roles in local and distant disease progression. © 2018 USCAP, Inc All rights reserved
    corecore