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Analysis of clinically relevant somatic mutations in high-risk head and neck
cutaneous squamous cell carcinoma

Abstract
Cutaneous squamous cell carcinoma is the second most prevalent malignancy, most frequently occurring in
the head and neck (head and neck cutaneous squamous cell carcinoma). Treatment of locally advanced or
metastatic disease is associated with functional morbidity and disfigurement. Underlying genetic mechanisms
are poorly understood. Targeted sequencing of 48 clinically relevant genes was performed on DNA extracted
from formalinfixed and paraffin-embedded high-risk primary head and neck cutaneous squamous cell
carcinomas that remained non-metastatic at minimum follow-up of 24 months. Associations of somatic
mutations with clinicopathologic characteristics were evaluated and compared with those described in the
literature for metastatic disease. Alterations in 44 cancer-associated genes were identified. TP53 was mutated
in 100% of cases; APC, ATM, ERBB4, GNAQ, KIT, RB1 and ABL1 were altered in 60% of cases. FGFR2
mutations (40%) were exclusively seen in patients with perineural invasion. MLH1 mutations were
exclusively seen in the two younger patients (<45>years). Lower incidences of NOTCH1 mutations were
observed compared with that described in metastatic head and neck cutaneous squamous cell carcinoma in
the literature. Somatic mutations susceptible to EGFR inhibitors, and other small molecular targeted
therapeutics were seen in 60% of cases. This study provides insights into somatic mutations in non-metastatic,
high-risk head and neck cutaneous squamous cell carcinoma and identifies potential therapeutic targets.
Alterations in FGFR2 and NOTCH1 may have roles in local and distant disease progression.
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Abstract 

Cutaneous Squamous Cell Carcinoma is the second most prevalent malignancy, most 

frequently occurring in the head and neck (Head and Neck cutaneous squamous cell 

carcinoma). Treatment of locally advanced or metastatic disease is associated with functional 

morbidity and disfigurement. Underlying genetic mechanisms are poorly understood. 

Targeted sequencing of 48 clinically relevant genes was performed on DNA extracted from 

formalin fixed and paraffin embedded high risk primary Head and Neck cutaneous squamous 

cell carcinomas that remained non-metastatic at minimum follow up of 24 months. 

Associations of somatic mutations with clinicopathologic characteristics were evaluated and 

compared to those described in the literature for metastatic disease. Alterations in 44 cancer-

associated genes were identified. TP53 was mutated in 100% of cases; APC, ATM, ERBB4, 

GNAQ, KIT, RB1 and ABL1 were altered in 60% of cases. FGFR2 mutations (40%) were 

exclusively seen in patients with peri-neural invasion. MLH1 mutations were exclusively 

seen in the 2 younger patients (<45 years). Lower incidences of NOTCH1 mutations were 

observed compared with that described in metastatic Head and Neck cutaneous squamous 

cell carcinoma in the literature. Somatic mutations susceptible to EGFR inhibitors, and other 

small molecular targeted therapeutics were seen in 60% of cases. This study provides insights 

into somatic mutations in non-metastatic, high risk Head and Neck cutaneous squamous cell 

carcinoma and identifies potential therapeutic targets. Alterations in FGFR2 and NOTCH1 

may play roles in local and distant disease progression.  

 

 

 



2 

 

Cutaneous squamous cell carcinoma is the second most common malignancy in the world 

and most frequently occurs in the head and neck (1). Disease incidence is rising in countries 

with a high fair skin population and solar ultraviolet index, and with the aging population (2). 

The National Comprehensive Cancer Network (https://www.nccn.org/) guidelines indicate 

that nearly 14% of Head and Neck cutaneous squamous cell carcinomas seen in a 

Dermatology department are ‘high-risk’ lesions due to presence of perineural invasion and/or 

invasion of the subcutaneous tissues (3). 

 

Surgical resection forms the mainstay of treatment and is followed in selected cases by 

adjuvant radiotherapy, unfortunately a significant proportion of Head and Neck cutaneous 

squamous cell carcinomas develop local recurrences and approximately 14% of high risk 

lesions develop regional metastases (3) . Predicting which patients will develop recurrence or 

metastases is not possible as the currently available clinical and histologic prognostic 

indicators are unreliable (4). Due to lack of effective second line therapies, over 30% of 

patients with advanced nodal disease and 89% of patients with distant metastases die from 

Head and Neck cutaneous squamous cell carcinoma, and in those cured by radical surgery the 

quality of life remains poor, highlighting the need for other therapeutic options (5). 

 

The recent advances in massive parallel sequencing technologies have significantly 

transformed the treatment and survival in several lethal malignancies such as melanoma and 

pulmonary adenocarcinoma (6, 7). The utility of these techniques remains relatively 

unexplored in Head and Neck cutaneous squamous cell carcinoma. Herein, we evaluate the 

somatic mutations in high risk tumors using a clinically relevant, commercially available, 

targeted cancer gene panel to ensure universal applicability of our findings. A cohort of 

patients with high risk Head and Neck cutaneous squamous cell carcinoma that did not 
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develop metastases after a minimum follow up of 24 months was selected for this study to 

enable comparison with the cohorts of metastatic cutaneous squamous cell carcinoma 

described in the literature. The primary aims of this study were to identify somatic mutations 

associated with adverse histopathological features in Head and Neck cutaneous squamous 

cell carcinoma and to investigate the differences in somatic mutations observed in this non-

metastatic cohort with those described in metastatic Head and Neck cutaneous squamous cell 

carcinoma cohorts in the literature.  The secondary aim was to identify somatic mutations 

amenable to currently available clinical and preclinical targeted therapeutic agents. 

 

Materials and Methods 

Following institutional Human Research Ethics committee approval, patients with high risk 

Head and Neck cutaneous squamous cell carcinoma treated with curative intent between 

2008 and 2014 were identified from the prospectively collected database held at the Sydney 

Head and Neck Cancer Institute. A representative example of the type of Head and Neck 

cutaneous squamous cell carcinoma included in this study is depicted in Figure 1.  High risk 

disease was defined as per the criteria provided in the 7
th

 edition of American Joint 

Commission on Cancer Staging Manual (8).  Only patients who had either undergone 

concurrent sentinel node biopsy or neck dissection with at least 24 months of follow up and 

complete clinical data were included. Patients with histopathologically positive sentinel 

lymph node biopsies or concurrent neck dissections and those who developed nodal 

metastases during follow up were excluded. In total, 24 cases of high risk Head and Neck 

cutaneous squamous cell carcinoma met the selection criteria. 

 

The histopathology slides and paraffin blocks were retrieved from the archives of the 

Department of Tissue Pathology and Diagnostic Oncology at Royal Prince Alfred Hospital, 
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Sydney, New South Wales, Australia. A complete histopathology review was performed and 

the tumor size, depth of invasion, lympho-vascular and perineural invasion, bone 

involvement and margins of resection were recorded. Highly cellular areas of the tumor with 

a neoplastic cell content of 30-90% and without necrosis, keratin, inflammatory infiltrate or 

hemorrhage were identified.  

Malignant tissue selected as described above was macro-dissected from the blocks for 

deoxyribonucleic acid (DNA) extraction. Case matched normal tissue from the benign neck 

lymph nodes was used as germline control for mutation filtering. DNA extraction was 

performed using truXTRAC® formalin fixed paraffin embedded DNA microTUBE kit 

(Covaris, Woburn, MA, USA) as per the manufacturer’s instructions. 

Samples with sufficient DNA that passed the quality control checks using Illumina formalin 

fixed paraffin embedded quality control Kit were available in 10 cases. Thus, the final cohort 

used for library preparation included 10 patients. The TruSeq Amplification Cancer Panel® 

(Illumina, San Diego, USA) was utilized to assess 48 clinically relevant genes: ABL1, ALK, 

AKT1, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, 

FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, 

JAK2, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, 

PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL. 

The reads were aligned to the human reference genome (GRCh37) using Isis Smith-

Waterman-Gotoh (v2.6). Illumina Somatic Variant Caller (v4.0) Illumina variant studio 

(v2.3) was used for variant calling and annotation, respectively. Somatic variants were 

identified after deducting the normal/germline variants observed in the matched normal 

samples from those observed in the tumor samples. Variant positions with a coverage of 500x 

read depth or more, and those variant alleles observed at a >5% frequency were included in 
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further analysis. A single patient (case 1) did not have a matched normal, so variants known 

to be common in ExAC (MAF > 0.1%) were filtered for this individual. 

In-silico analysis using PolyPhen 2, (9) and SIFT (10) was performed. Catalogue of Somatic 

Mutations in Cancer (COSMIC) databases (11) were used for functional annotation of the 

identified variants and to understand their potential interactions in the relevant signal 

transduction pathways. Functional Analysis through Hidden Markov Models (FATHMM) 

(http://fathmm.biocompute.org.uk/cancer.html) were used to understand the pathogenicity of 

the identified somatic alterations (12). 

All functionally characterized mutations that have been shown to promote carcinogenesis in 

other malignant neoplasms, in animal models and in cell cultures, and all truncations and 

deletions in tumor suppressor genes were selected for further analysis. 

Literature searches using PubMed for English language literature were performed to identify 

studies providing the details of somatic mutations in metastatic Head and Neck squamous cell 

carcinoma and somatic alterations amenable to currently available therapies. 

 

Results 

Clinicopathologic characteristics of the high-risk, non-metastatic cSCC cohort 

The final cohort of 10 patients included 8 men and 2 women with a median age of 

71 years (range 38-92 years) at the time of surgery. The median tumor diameter was 25mm 

(range 7-160mm) with a median depth of invasion of 10.5mm (range 2-70mm) and 4 (40%) 

patients exhibited peri-neural invasion (Table 1). 

 

Overview of somatic mutations 

Targeted sequencing of 48 cancer-associated genes to a mean coverage of 6907 ± 2044 (n=9) 

in the normal samples and 9544 ± 6486 (n=10) in the tumor samples was performed.  
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A total of 1313 mutations were identified across the 10 patient samples. These included 488 

mutations in the coding region and 12 essential splice site variations, and 813 mutations in 

the non-coding region.  Of the coding region and splice site mutations 464 somatic mutations 

were found to be functionally significant across 44 of the targeted genes using COSMIC 

database, FATHMM scores, literature review and including those mutations leading to 

truncations or deletions of genes. A mean of 46 (range 3-146) significant somatic mutations 

were observed per patient. Whilst the unpaired sample had a higher than average number of 

mutations, it did not demonstrate the greatest mutation burden (53 putative somatic variants 

vs range of 3-146).  C/T and G/A transitions, characteristic of UV mediated DNA damage 

(13) were the dominant substitution comprising 72% of the mutation spectrum. 90% of 

samples contained at least one C/T transition. 

 

The most frequently observed non-synonymous somatic mutations were in TP53 

(N=10,100%), ATM (N=6, 60%), APC (N=6, 60%), ERBB4 (N=6, 60%), GNAQ (N=6, 60%), 

ABL1 (N=6, 60%), KIT (N=5, 50%), PIK3CA (N=5, 50%), AKT1 ((N=5, 50%) and RB1 

(N=5, 50%). An overview of mutated genes and types of alterations identified is provided in 

Figure 2. 

 

Table 2 list the validated loss of function mutations in tumor suppressor genes. Eleven 

mutually exclusive, functionally relevant TP53 mutations were identified in 9 cases - 9 of 

which were within the DNA-binding domain of the gene (Figure 3A). TP53 R282W has 

been described in cutaneous SCC (14) and basal cell carcinoma (15) while the others have 

been described in breast, colorectal and other carcinomas (Table 2). 

 

Functionally significant alterations in the APC gene were observed in 6 patients. These 
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occurred within the mutational cluster region of the gene (codons 1030-1700 containing 

domains integral to β-catenin regulation). Two truncating mutations at positions R1114* and 

Q1328* in the APC gene that are well annotated in colorectal carcinoma (16, 17) were also 

observed (Figure 3B). 

 

There were 3 nonsense and 2 deletion mutations in the ATM gene, including two cases with 

truncations at R2443* previously reported in Mantle Cell Lymphoma (18) (Figure 3C). Two 

patients with functionally relevant ATM mutations also showed loss of function mutations in 

the MLH1 gene (Q407*, Q426*, R423*). These are novel MLH1 mutations, resulting in loss 

of the C-terminal dimerization domain necessary for normal function of the mismatch repair 

protein (19). 

 

The 3 cases with SMAD4 mutations include; two deletions (c.533delC, S178*) and 

(c.1186delG, p. D396Mfs*19), and 2 truncating mutations, K122* and Q448*. SMAD4 

deletion in head and neck epithelia has been described to result in spontaneous generation of 

Head and Neck cutaneous squamous cell carcinoma in mice (20). 

 

Loss of function mutations in VHL were identified in 3 cases, including R113* and Q132*; 

both of which are well characterized in renal cell carcinoma. Loss of function mutations in 

PTEN gene have been associated with disease progression and resistance to radiotherapy in 

head and neck and pulmonary squamous cell carcinoma (21, 22). A validated loss of function 

mutation in PTEN, Q17*, was observed in only a single patient. We noted 3 functionally 

significant mutations in FBXW7 including W446* and W486* in 2 patients leading to 

premature truncation of the WD2 repeat domain. Both are well described in colorectal 

carcinoma (Table 2). 



8 

 

 

CDKN2A mutations are well characterized in cutaneous squamous cell carcinoma and in 

melanoma. 3 cases had mutations in this gene, 2 of these are the known truncating variants 

within the Ankyrin-repeat containing domain, R58* and E61*, described in cutaneous 

squamous cell carcinoma and melanoma (23). 

  

Known gain of function mutations in oncogenes were present in 60% of samples. A total of 

12 functionally relevant oncogenic gain of function mutations were present across 10 genes 

(Table 3). Mutations in receptor tyrosine kinases resulting in constitutive tyrosine kinase 

activity and elevated downstream signalling were seen in this cohort. Two mutations, HRAS 

G13D and BRAF G464R have been described in a metastatic cutaneous squamous cell 

carcinoma cohort (24). The BRAF mutation, and alterations in KDR Q472H, KIT T670I and 

GNAQ R183Q have been previously detected in cutaneous and uveal melanoma samples (25, 

26). EGFR A864T is a rare activating variant (27) was also seen in this cohort. An activating 

JAK3 A572T mutation, previously detected in T-cell acute lymphoblastic leukemia at a 

location shown to promote hematological malignancy in mice was identified. Two alterations 

in PTPN11 (D61Y, T73I), characteristically found in hematological malignancies (28), were 

also identified in 2 patients. 

 

Association with Clinicopathologic Characteristics: 

Novel somatic mutations in MLH1 (Q407*, Q426*, R423*) leading to premature truncation 

and loss of the C-terminal dimerization domain were seen in 2 patients, both younger than 45 

years of age. 
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Somatic missense mutations in the receptor tyrosine kinase FGFR2 were exclusively seen in 

patients with histologic evidence of perineural invasion.  Of these, FGFR2 N549K and 

FGFR2 M536I are validated activating mutations, conferring constitutive tyrosine kinase 

activation facilitating tumorigenesis in cell culture (29). FGFR2 N549K is well documented 

in endometrial carcinoma (30). In addition, 2 novel mutations, FGFR2 A380D and D528N 

leading to changes within the transmembrane domain and protein tyrosine kinase domain, 

respectively were also observed in this cohort. Of the 4 patients with evidence of perineural 

invasion, 2 had histologic evidence of lymphovascular invasion. There were no unique 

findings in this sub-group. Additionally, there were no differences in mutations according to 

histologic differentiation. 

 

NOTCH1 alterations were observed in one patient in this non-metastatic cohort using the 

targeted panel covering 43 commonly mutated amino acid residues in positions 1562 to 1600 

and 1674 to 1678 in the NOTCH1 protein. The NOTCH1 L1569P mutation occurs within a 

functionally significant negative regulatory region of the gene, however the functional 

significance, if any, of this mutation has not been described in the literature. 

 

Somatic mutations in HNcSCC and targeted therapies 

Table 4 lists 10 activating mutations in oncogenes which demonstrate susceptibility to 

currently clinically available targeted therapeutics or to small molecule drugs undergoing 

clinical trials or preclinical investigations. 60% of the cases demonstrated at least one 

alteration amenable to small molecule therapy, though recurrent alterations were rare. Of 

these, 3 cases showed mutually exclusive mutations (EGFR A864T, KIT T670I) with 

sensitivity to approved therapies (Erlotinib/Gefitinib – EGFR inhibitors, Sorafenib – broad 

tyrosine kinase inhibitor, respectively) that are used in other malignancies. One of the 
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patients showed a  KDR Q472H mutation which is susceptible to the anti-VEGF drug 

Bevacizumab that is approved for the treatment of metastatic cervical, colorectal, breast and 

renal cancers (31). HRAS G13D that demonstrates in vitro susceptibility to combined MET 

and MEK inhibition, and to novel Ras inhibitors (32, 33) was seen in one patient, and was 

mutually exclusive to the patient with as EGFR activating mutation. The SMO L412F 

mutation, previously detected in Basal cell carcinoma, shows resistance to Vismodegib (34), 

but may be susceptible to a  new class of compounds, the GLI inhibitors that are under 

investigation for Hedgehog pathway blockade (34).  

Discussion 

The current cohort of 10 patients is unique in that it represents a group of high-risk Head and 

Neck cutaneous squamous cell carcinoma tumors with a median depth of invasion of 10.5mm 

and without evidence of metastatic disease. In addition to confirming the presence of the 

typical UV signature of C/T transitions and the high incidence of tumor suppressor mutations 

including TP53, the analysis puts forth several findings. These include; presence of somatic 

mutations in MLH1 in young patients with cSCC, presence of FGFR2 mutations exclusively 

in patients with perineural invasion, lower incidence NOTCH1 mutations in this non-

metastatic cohort as compared to metastatic cohorts described in the literature, and the 

presence of actionable mutations with targeted therapeutic agents approved for other common 

malignancies in nearly 60% of cases. 

TP53 loss of function is hypothesized to occur early in cutaneous squamous cell carcinoma 

pathogenesis (23). The loss of heterozygosity is associated with a sharp increase in mutation 

burden (23). Further evidence supporting early mutation of TP53 in skin comes from studies 

of physiologically normal, sun-exposed skin with clones of TP53 mutant cells (35, 36). Of 

the 11 functionally validated TP53 mutations in the current cohort, 8 affected the DNA 

binding domain of the gene. Location of gene mutation may have predictive roles in disease 
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prognosis. While this has not been explored in cutaneous SCC;  TP53 mutations within the 

DNA binding domain have been found to be an independent predictor of poor disease 

specific survival in oral squamous cell carcinoma (37). 

 

Mutations in ATM were detected in 60% of tumor samples. ATM is an integral player in the 

DNA damage response pathway, orchestrating signalling following UV damage (38). In vitro 

changes to phosphorylated ATM localization (and hence signalling) have been identified in 

normal, sun-exposed, pre-malignant and cutaneous squamous cell carcinoma cell lines (39). 

Interestingly, the two youngest patients (less than 45 years) showed functionally significant 

somatic mutations in both ATM and MLH1. These patients also showed relatively high total 

mutation burdens (198 and 502). Familial MLH1 alterations are characteristic of Hereditary 

Non-Polyposis Colon Cancer syndrome. Sebaceous carcinoma is a well-known component of 

the Muir-Torre syndrome, however, there is no information regarding cutaneous squamous 

cell carcinoma as a component of Hereditary Non-Polyposis Colon Cancer syndrome (40). 

The role of somatic mutations in MLH1 and its association with earlier age of onset of 

cutaneous squamous cell carcinoma is not well studied. 

 

FGFR2 is a receptor tyrosine kinase mediating cell division, growth and differentiation 

signalling. Immunohistochemical over-expression of FGFR2 has been described to be 

associated with perineural invasion (41), advanced tumor stage and shorter survival in 

patients receiving neoadjuvant chemotherapy for rectal cancers (42). Amplification of 

FGFR2 in gastric cancer is related to regional lymph node metastases and subsequent poor 

prognosis (43). Interestingly, FGFR2 mutations in our patient cohort were seen only in those 

with histologic evidence of perineural invasion. However, the role of missense mutations in 
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the protein tyrosine kinase domain of FGFR2 and its role in perineural invasion is not 

documented. 

 

In the current non-metastatic cohort, we detected a single example of a mutation in the 

NOTCH1 gene. The functional significance of this alteration appears to be limited. This 

contrasts with information obtained from the DNA analysis of metastatic tumors which 

demonstrated NOTCH1 mutations in 69% of the cohort (24). In cutaneous squamous cell 

carcinomas from immunocompromised patients NOTCH1/2 was altered in 89% of samples 

(44), and Pickering et. al described 30% prevalence of NOTCH1 inactivating mutations (14). 

A direct comparison of the various studies evaluating NOTCH changes in cutaneous 

squamous cell carcinoma is primarily limited by the wide variety of the testing methods used 

such as whole exome sequencing and capture panel analysis. The Illumina TruSeq Amplicon 

Cancer Panel® used in the current study covers approximately 35Kb (exons 26 AA 1562-

1600; exon 27 AA 1674-1678) of NOTCH1. Additionally, combinations of primary and 

metastatic cohorts have been used in the literature without further information regarding the 

distribution of NOTCH mutations in primary or metastatic tissues. Also, the details of the 

quality control checks while using formalin fixed paraffin embedded samples and the 

functional significance of the various alterations described in these studies are not readily 

available. For instance, the incidence of NOTCH1 mutations drops from 69% to only 24% in 

the metastatic cohort described by Li et al when only functionally significant mutations are 

considered (24). NOTCH1 plays multifaceted roles in carcinogenesis. It has been proposed 

that loss of NOTCH1 is not an initiator of disease, but acts more as a cancer promoting event 

(45). Thus, the role of this gene in regional and distant progression of Head and Neck 

cutaneous squamous cell carcinoma bears further investigation in well-designed cohorts 
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using comprehensive DNA and expression analysis. This is particularly significant currently, 

as therapeutic targets modulating NOTCH activity are under development (46).  

 

There is an unmet need for effective medical treatment of invasive and metastatic cutaneous 

squamous cell carcinoma. It has been hypothesized that this disease is largely tumor 

suppressor driven in etiology (14), which, combined with the consistently reported high 

mutation burden of cSCC, has been a barrier to the development of targeted therapies. Our 

findings indicate mutations in oncogenes such as EGFR, KIT, KDR, GNAQ and ERBB4, 

though these were largely mutually exclusive non-recurrent events in this cohort. Similar 

findings have also been described by Li et al and Al-Rohil et al (24, 47). 10 somatic 

mutations identified in 6 patients in this cohort may potentially be susceptible to currently 

approved therapies or to small molecule drugs under development. This finding merits further 

investigations, particularly as a phase 2 study evaluating use of gefitinib in aggressive 

cutaneous squamous cell carcinoma demonstrated favorable survival outcomes (48). 

Cetuximab has been trialled in a small cohort of  patients, achieving a 69% disease control 

rate after 6 weeks of treatment including 8 partial and 2 complete responses (49). 

 

The targeted panel used in this study is highly biased towards receptor tyrosine kinase genes 

involved in MAPK, PI3K and mTOR signalling pathways, and nearly 90% of cases contained 

alterations in genes belonging to PI3K/mTOR pathway. Reduced rates of cutaneous 

squamous cell carcinoma development have been observed in organ transplant recipients 

receiving mTOR inhibitors (50). Al-Rohil et. al have also recently described a clinical 

response in a patient with cSCC with PIK3CA P471L mutation, treated with an mTOR 

inhibitor temsirolimus (47). While 5 of our patients showed PIK3CA mutations, no known 

targetable mutations were identified in this gene. 
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The chief limitations of this study include the small cohort size, use of formalin fixed paraffin 

embedded samples and use of a targeted panel.  Although, cutaneous squamous cell 

carcinoma is a common malignancy, locally advanced high risk tumors that have not 

developed metastases at a minimum follow up of 2 years are extremely rare, particularly if 

complete clinicopathologic data and follow up are also required. Furthermore, stringent 

quality control checks were applied to ensure that only those cases with high quality DNA 

were included in analysis. Extraction of high quality DNA from archival material is 

inherently difficult leading to further shrinkage of the cohort. The TruSeq Amplification 

Cancer Panel is suitable for the fragmented DNA obtained from formalin fixed paraffin 

embedded samples and allows for cost effective data analysis in a clinically relevant time 

frame that can be replicated in other centers with DNA sequencing facilities. Furthermore, 

our data shows several of the alterations identified by more comprehensive techniques 

requiring fresh tissue (14, 44). Thus, we believe that our findings are likely to be reproduced 

in other study cohorts of non-metastatic, high risk disease. 

 

In conclusion, we have performed targeted sequencing of 48 cancer-associated genes on a 

unique cohort of 10 high-risk, non-metastatic Head and Neck cutaneous squamous cell 

carcinoma cases to a mean coverage of 6907. Our results confirm the presence of a UV DNA 

damage signature, a high mutation burden and the predominance of TP53 mutations in 

disease pathogenesis. In addition, we describe several novel findings including - somatic 

mutations in MLH1 in younger patients with Head and Neck cutaneous squamous cell 

carcinoma, FGFR2 mutations in patients with perineural invasion and a low incidence of 

NOTCH1 mutations in this cohort, all of which open further avenues of study. Our data also 

indicate the presence of targetable mutations in a significant proportion of tumors suggesting 
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further treatment options for Head and Neck cutaneous squamous cell carcinoma, an under-

researched disease with significant morbidity and mortality in the fair skinned population. 
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Figure 1: 1A. Excision of HNcSCC involving the nasal alae with subcutaneous extension 

onto the right cheek. The entire tumor including the ulcerated component and the 

subcutaneous extension measure 55mm in maximum dimension. 1B. Moderately 

differentiated squamous cell carcinoma, infiltrating through the dermis and the subcutaneous 

tissue to a depth of 15mm, Clark level 5 (Haematoxylin and Eosin X 20). 1C. Perineural 

invasion of a large nerve bundle at the deep margin of the specimen (high risk) 

(Haematoxylin and Eosin X 40); inset: squamous cell carcinoma is seen within the 

perineurium, surrounding approximately two thirds of the circumference of the nerve 

(Haematoxylin and Eosin X 100).  

 

Table 1. Patient Clinicopathological data. 

 

Figure 2: Genomic overview of mutations detected by targeted gene sequencing of 48-cancer 

associated genes in 10 high-risk cases of non-metastatic HNcSCC. Missense variants 

(meeting at least one of – MutSig significance, FATHMM significance or known COSMIC 

mutation), nonsense mutations, insertions/deletions and splice variants illustrated in the right-

hand plot. Left-hand plot demonstrates the percentage of samples with alterations detected in 

each given gene.  

 

Table 2. All functionally validated or likely significant mutations in tumor suppressor genes. 

 

Figure 3: Visual representation of location of detected missense variants, nonsense 

mutations, insertions and deletions in 2A. TP53, 2B. APC and 2C, ATM. Green – missense 

variants; Purple - nonsense mutations and gene deletions. Red highlights X-axis represent 

areas covered by TruSeq amplicon panel. 

 

 

Table 3. All functionally validated mutations in oncogenes. 

 

Table 4. All functionally validated mutations in oncogenes susceptible to currently approved 

or preclinical small molecule targeted therapies. 
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Table 1. Patient Clinicopathological Data 

Variable N. % 

Age, years 

≤55 2 20 

56 to 65 2 20 

≥66 6 60 

Sex 

Male 8 80 

Female 2 20 

Location 

Ear 2 20 

Forehead/scalp 4 40 

Lip 2 20 

Nose 1 10 

Pre-auricular 1 10 

Differentiation 

Well 1 10 

Moderate 7 70 

Poor 2 20 

Depth of invasion 

<5mm 3 30 

5-10mm 2 20 

>10mm 5 50 

Pattern of invasion 

Pushing 0 0 

Infiltrative 10 100 

Margins 

Clear 4 40 

Close 1 10 

Involved 5 50 

Lympho-vascular invasion 

Yes 2 20 

Perineural invasion 

Yes 4 40 

Pathological T category  

T1 2 20 

T2 6 60 

T3 0 0 

T4 1 10 

Pathological N category 

N0 10 100 

Treatment 

Surgery alone 7 70 

Surgery + radiotherapy 3 30 
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Case 

Number 

Gene 

Symbol 
Mutation COSMIC ID Location Evidence in other cancers 

1 TP53 c.273G>A, p. W91* COSM44492 
Premature truncation within Proline-rich domain, loss of DNA 

Binding Domain (DBD) 

Biliary Tract, Breast, Endometrium, Esophagus 

(Carcinoma), Lung (NSCLC – Adenocarcinoma)   

1 TP53 c. 880G>T, p E294* COSM10856  Premature truncation  
Colorectal, Breast, Endometrium, Lymphoid 

(DLBCL) 

1 APC c.2752_2753delGA, p.R919Kfs*4 N/A 
Frameshift deletion with Armadillo-associated region, Predicted 

premature truncation with loss of downstream functional domains 
N/A 

1 ATM c. 3991C>T, p. Q1331* N/A Premature truncation, loss of downstream functional domains  N/A 

1 VHL c. 394C>T, p. Q132* COSM14356 
Premature truncation within VHL beta-domain responsible for 

complex formation 

Kidney (Clear Cell), Pancreas, Soft Tissue 

(Disseminated Cerebellar Hemangioblastoma) 

1 PTEN c. 49C>T, p. Q17* COSM5153 Premature truncation, loss of downstream functional domains 
Breast, Endometrium, Lymphoid, Lung 

(Adenocarcinoma) 

3 TP53 c. 655C>T, p. P219S   COSM44076 Missense mutation within DBD 

Esophagus (SCC), Lymphoid (T-cell), Aerodigestive 

tract (HNSCC), Leiomyosarcoma, Tumor growth in 

cell culture models 

3 APC c. 3982C>T, p. Q1328* COSM18859 Premature truncation, loss of downstream Ctnnb1 binding sites Colorectal, Endometrial 

3 APC c.4034delA, p. E1345Dfs*70 N/A 
Frameshift deletion, leading to premature truncation and loss of 

downstream Ctnnb1 binding sites 
N/A 

3 SMAD4 c.364A>T, p. K122* N/A 
Premature truncation within MAD homology (MH1) domain 

involved in nuclear import and protein interactions 
N/A 

3 SMAD4 c.533delC,  p.S178* N/A 
Frameshift deletion, leading to premature truncation, loss of 

downstream MH2 functional domain 
N/A 

3 RB1 c. 1735C>T, p. R579* COSM892 Premature truncation, loss of downstream functional domains 

Biliary Tract, Lung (SCLC), Melanoma, 

Retinoblastoma, Lymphoid (COSMIC unknown), 

BCC 

1, 3 ATM c. 7327C>T, p. R2443* COSM21678 
Premature truncation within Focal Adhesion Targeting (FAT) 

domain 
Adrenal Cortex (Adenoma), Lymphoid (Mantle cell) 

5 TP53 c. 818G>A, p. R273H  COSM10660 Missense mutation within DBD 
Biliary Tract, Bone (Chondrosarcoma, Ewing’s 

sarcoma, Osteosarcoma), Increased cell migration 
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5 TP53 c. 880G>T, p. R280K  COSM330620  Missense mutation within DBD 

Breast, Colorectal, Ovarian, Hematopoietic 

(Primary Plasma Cell Leukemia), Increased 

activation novel targets 

5 ATM c. 1063C>T, p. Q355* N/A Premature truncation, loss of downstream functional domains N/A 

5 ATM c.2617delG, p.G873Efs*7 N/A 
Frameshift deletion, leading to premature truncation with loss of 

downstream functional domains 
N/A 

5 ATM c.5066delA, p.Q1689Hfs*25 N/A 
Frameshift deletion, leading to premature truncation, loss of 

downstream functional domains  
N/A 

5 MLH1 c.1219C>T, p. Q407* N/A Premature truncation, loss C-terminal dimerization domain  N/A 

5 MLH1 c.1264_1268delGGCAG,  p.R423* N/A 
Frameshift deletion, leading to premature truncation, loss 

downstream functional domains 
N/A 

5 SMAD4 c.1342C>T, p. Q448* N/A 
Premature truncation within MH2 domain involved in protein 

interactions 
N/A 

5 VHL c.583C>T, p. Q195* N/A Premature truncation within VHL box domain N/A 

5 CDH1 c. 1118C>T, p. P373L N/A Missense mutation upstream from Cadherin 3 domain 
Reduced interaction with EGFR, increased motility 

cell culture 

5 CDH1 c.1240delA, p.T414Pfs*3 N/A 
Frameshift deletion within Cadherin domain 3, leading to 

premature truncation  
N/A 

5 FBXW7 c. 1338G>A, p. W446* COSM22986 Premature truncation within WD2 repeat domain Colorectal 

5 FBXW7 c.1469delC,  p.T490Kfs*8 N/A 
Frameshift deletion, Predicted premature truncation, loss of 

downstream functional domains 
N/A 

5 RB1 c.1090G>T, p. E364* N/A Premature truncation, loss of downstream functional domains N/A 

5 RB1 c.1811_1814+11delATATGTAAGCAAAAT N/A 
Frameshift deletion within Rb-associated protein B domain, 

predicted premature truncation 
N/A 

2 TP53 
c.502_513delCACATGACGGAG,  

p.H168_E171delinsdel   
N/A Frameshift deletion within DBD N/A 

2 CDH1 c.349delA, p.N117Ifs*98 N/A 
Frameshift deletion within Cadherin 2 domain, loss of downstream 

functional domains 
N/A 
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4 TP53 c. 310C>T, p. Q104* COSM10886 Premature truncation within DBD 

Biliary Tract, Breast, Esophagus (Carcinoma), 

Hematopoietic (AML), Lung (NSCLC - 

Adenocarcinoma) 

4 VHL c. 337C>T, p. R113* COSM30228 
Premature truncation within VHL beta-domain responsible for 

complex formation 
Kidney (clear cell) 

4 FBXW7 c. 1458G>A, p. W486* COSM87016 
Premature truncation within WD3 (Tryptophan-aspartic acid) 

repeat domain 
Colorectal, Tumor growth cell culture 

6 TP53 c. 844C>T, p.R282W  COSM10704 Missense mutation within DBD cSCC, BCC, Tumor growth mouse models 

7 TP53 c. 746G>T, p. R249M  COSM43871 Missense mutation within DBD 

Breast, Colorectal, Liver, Bone (Ewing Sarcoma), 

CNS (glioma), Lymphoid (CLL), Hematopoietic 

(Myelodysplasia) 

7 TP53 c.617delT,  p.L206Wfs*41 N/A Premature truncation within DBD  N/A 

7 APC c. 3340C>T, p. R1114* COSM13125 
Premature truncation within unstructured region of APC, leading 

to loss of downstream Ctnnb1 binding sites 
Colorectal, Endometrial 

9 TP53 c. 1010G>A, p. R337H  COSM43882 Missense mutation within Tetramerization Domain 

Adrenal (Carcinoma, Pheochromocytoma), Cervix 

Colorectal, Liver, Disrupted tetramer formation in 

cell culture 

9 APC c.4549C>T, p. Q1517* N/A 
Premature truncation, leading to downstream loss of Ctnnb1 

binding sites 
Loss of beta-catenin regulation 

9 MLH1 c.1276C>T, p. Q426* N/A Premature truncation loss C-terminal dimerization domain  N/A 

9 SMAD4 c.1186delG, p.D396Mfs*19 N/A 
Frameshift deletion within MH2 domain, leading to premature 

truncation 
N/A 

10 TP53 c. 832C>T, p. P278S  COSM10939 Missense mutation within DBD Breast, Tumor growth xenograft models 
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Case 

Number 
Gene Symbol Mutation COSMIC ID Location and functional effect Evidence 

3 EGFR c. 2590G>A, p. A864T COSM13197 
Missense mutation within Protein Tyrosine Kinase 

(PTK) domain 

NSCLC (Large Cell), Biliary tract, Adrenal (Carcinoma), Increased 

Tyr kinase activity in cell culture 

5 KIT c. 2009C>T, p. T670I COSM12708 Missense mutation within ATP binding pocket 
GIST, Melanoma, Constitutive Tyr kinase phosphorylation cell 

culture, Gain of Function 

1 KDR c. 1416A>T, p. Q472H COSM149673 
Missense mutation; does not lie in known functional 

domain 

Neuroblastoma, GIST, Bone, Melanoma, Lymphoid (DLBCL), 

Colorectal, Rhabdomyosarcoma, Increased Tyr kinase activity 

cell culture, Increased angiogenesis tumor samples 

5 BRAF c. 1390G>A, p. G464R COSM1448615 Missense mutation within PTK domain 
<1% Melanomas, cSCC, Increased Tyr kinase activity in cell 

culture, Gain of Function 

3 FGFR2 c. 1608G>A, p. M536I N/A Missense mutations within PTK domain 
Increased kinase activity and enhanced cell proliferation in the 

presence of ligand in culture 

3 FGFR2 c. 1646T>A, p. N549K N/A Missense mutations within PTK domain 
 Confers a gain of function to the Fgfr2 protein, resulting in 

oncogenic transformation in cell-based studies 

7 GNAQ c. 548G>A, p. R183Q COSM52975 Missense mutation within nucleotide binding region 
Uveal Melanoma, Colorectal, Reduced GTPase activity in cell 

culture, Increased downstream signalling, Gain of Function 

1 HRAS c. 38G>A, p. G13D COSM490 
Missense mutation within the GTP nucleotide binding 

region  

Inhibits GTPase activity leading to increased activation of 

downstream signalling in the absence of activation  

9 JAK3 c. 1714G>A, p. A572T COSM327318 Missense mutation within PTK domain 
Lymphoid (T-ALL), Increased Tyr kinase activity in cell culture, 

Gain of Function 

9 PTPN11 c. 181G>T, p. D61Y COSM13011 
Missense mutation within Src Homology 2 (SH2) 

domain  

Hematopoietic (AML, ALL), neuroblastoma, Increased Tyr 

phosphatase activity in cell culture, Gain of Function 

1 PTPN11 c. 218C>T, p. T73I COSM13019 Missense mutation within SH2  

Hematopoietic (myelodysplastic syndrome, CML, ALL, AML), 

Increased Tyr phosphatase activity in cell culture, Gain of 

Function 

4 SMO c. 1234C>T, p. L412F COSM216037 
Missense mutation within pivot region 

Transmembrane (TM) helix 5 

Bone (Ameloblastoma), Constitutive activation of Hedgehog 

(HH) signalling in cell culture, Gain of Function 
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Case 

Number 
Gene Symbol Mutation Functional Effect Cellular Pathway Drug Susceptibility Evidence/use 

3 EGFR c. 2590G>A, p. A864T Gain of function; constitutive kinase activity MAPK Erlotinib, Gefitinib Non-Small Cell Lung Cancer 

7 KIT c. 2009C>T, p. T670I 
Gain of function, leads to constitutive 

phosphorylation of KIT 
MAPK Sorafenib, resistant to Imatinib 

Kidney, liver, GIST (Sorafenib) 

Melanoma (Preclinical) 

1 KDR 
c. 1416A>T, p. 

Q472H 
Gain of function; increased phosphorylation Angiogenesis VEGFR inhibitors 

Trials (NSCLC), Preclinical 

(Melanoma) 

3 FGFR2 c. 1646T>A, p. I549K Gain of function; constitutive kinase activity MAPK 

Ponatinib (resistance to dovitinib, 

PD173074); combination mTOR inhibitor 

(Ridaforolimus) 

Preclinical (Endometrial cancer 

cell lines, BaF3 cell lines) 

3 FGFR2 c. 1608G>A, p. M536I Gain of function; constitutive kinase activity MAPK 
Ponatinib (decreased response to 

dovitinib, PD173074) 

Preclinical (Endometrial cancer; 

BaF3 lines) 

6 GNAQ c. 548G>A, p. R183Q Loss of function; reduced GTPase activity PI3K; mTOR; PI3K Combined PKC, MEK inhibitors Preclinical 

1 HRAS c. 38G>A, p. G13D 
Loss of function; inhibition GTPase activity; 

increased downstream signalling 
MAPK; PI3K 

Combined MET, MEK inhibitors (resistance 

to MET inhibition); Ras inhibitors 
Preclinical 

9 PTPN11 c. 181G>T, p. D61Y 
Gain of function; increased Tyr phosphatase 

activity 
MAPK SHP2 inhibitor (actually shown in vivo) Preclinical 

1 PTPN11 c. 218C>T, p. T73I 
Gain of function; increased Tyr phosphatase 

activity 
MAPK SHP2 inhibitor Preclinical 

4 SMO c. 1234C>T, p. L412F 
Gain of function; constitutive (Hedgehog) HH 

signalling 
Hedgehog GLI inhibitors; Vismodegib resistance Preclinical 
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