3,333 research outputs found
Recommended from our members
Nanoscale spectroscopic origins of photoinduced tip-sample force in the midinfrared.
When light illuminates the junction formed between a sharp metal tip and a sample, different mechanisms can contribute to the measured photoinduced force simultaneously. Of particular interest are the instantaneous force between the induced dipoles in the tip and in the sample, and the force related to thermal heating of the junction. A key difference between these 2 force mechanisms is their spectral behavior. The magnitude of the thermal response follows a dissipative (absorptive) Lorentzian line shape, which measures the heat exchange between light and matter, while the induced dipole response exhibits a dispersive spectrum and relates to the real part of the material polarizability. Because the 2 interactions are sometimes comparable in magnitude, the origin of the chemical selectivity in nanoscale spectroscopic imaging through force detection is often unclear. Here, we demonstrate theoretically and experimentally how the light illumination gives rise to the 2 kinds of photoinduced forces at the tip-sample junction in the midinfrared. We comprehensively address the origin of the spectroscopic forces by discussing cases where the 2 spectrally dependent forces are entwined. The analysis presented here provides a clear and quantitative interpretation of nanoscale chemical measurements of heterogeneous materials and sheds light on the nature of light-matter coupling in optomechanical force-based spectronanoscopy
A Survey of Fault-Injection Methodologies for Soft Error Rate Modeling in Systems-on-Chips
The development of process technology has increased system performance, but the system failure probability has also significantly increased. It is important to consider the system reliability in addition to the cost, performance, and power consumption. In this paper, we describe the types of faults that occur in a system and where these faults originate. Then, fault-injection techniques, which are used to characterize the fault rate of a system-on-chip (SoC), are investigated to provide a guideline to SoC designers for the realization of resilient SoCs
Interspecific competition underlying mutualistic networks
The architecture of bipartite networks linking two classes of constituents is
affected by the interactions within each class. For the bipartite networks
representing the mutualistic relationship between pollinating animals and
plants, it has been known that their degree distributions are broad but often
deviate from power-law form, more significantly for plants than animals. Here
we consider a model for the evolution of the mutualistic networks and find that
their topology is strongly dependent on the asymmetry and non-linearity of the
preferential selection of mutualistic partners. Real-world mutualistic networks
analyzed in the framework of the model show that a new animal species
determines its partners not only by their attractiveness but also as a result
of the competition with pre-existing animals, which leads to the
stretched-exponential degree distributions of plant species.Comment: 5 pages, 3 figures, accepted version in PR
- …