256 research outputs found
Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning
Introduction
Recent studies have reported that HbA1c and lipid variability is useful for risk stratification in diabetes mellitus. The present study evaluated the predictive value of the baseline, subsequent mean of at least three measurements and variability of HbA1c and lipids for adverse outcomes.
Methods
This retrospective cohort study consists of type 1 and type 2 diabetic patients who were prescribed insulin at outpatient clinics of Hong Kong public hospitals, from 1st January to 31st December 2009. Standard deviation (SD) and coefficient of variation were used to measure the variability of HbA1c, total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglyceride. The primary outcome is all-cause mortality. Secondary outcomes were diabetes-related complications.
Result
The study consists of 25,186 patients (mean age = 63.0, interquartile range [IQR] of age = 15.1 years, male = 50%). HbA1c and lipid value and variability were significant predictors of all-cause mortality. Higher HbA1c and lipid variability measures were associated with increased risks of neurological, ophthalmological and renal complications, as well as incident dementia, osteoporosis, peripheral vascular disease, ischemic heart disease, atrial fibrillation and heart failure (p <  0.05). Significant association was found between hypoglycemic frequency (p <  0.0001), HbA1c (p <  0.0001) and lipid variability against baseline neutrophil-lymphocyte ratio (NLR).
Conclusion
Raised variability in HbA1c and lipid parameters are associated with an elevated risk in both diabetic complications and all-cause mortality. The association between hypoglycemic frequency, baseline NLR, and both HbA1c and lipid variability implicate a role for inflammation in mediating adverse outcomes in diabetes, but this should be explored further in future studies
Predictive scores for identifying patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac death
Introduction
The present study evaluated the application of incorporating non-linear J/U-shaped relationships between mean HbA1c and cholesterol levels into risk scores for predicting acute myocardial infarction (AMI) and non-AMI-related sudden cardiac death (SCD) respectively, amongst patients with type 2 diabetes mellitus.
Methods
This was a territory-wide cohort study of patients with type 2 diabetes mellitus above the age 40 and free from prior AMI and SCD, with or without prescriptions of anti-diabetic agents between January 1st, 2009 to December 31st, 2009 at government-funded hospitals and clinics in Hong Kong. Patients recruited were followed up until 31 December 2019 or their date of death. Risk scores were developed for predicting incident AMI and non-AMI-related SCD. The performance of conditional inference survival forest (CISF) model compared to that of random survival forests (RSF) model and multivariate Cox model.
Results
This study included 261 308 patients (age = 66.0 ± 11.8 years old, male = 47.6%, follow-up duration = 3552 ± 1201 days, diabetes duration = 4.77 ± 2.29 years). Mean HbA1c and low high-density lipoprotein-cholesterol (HDL-C) were significant predictors of AMI on multivariate Cox regression. Mean HbA1c was linearly associated with AMI, whilst HDL-C was inversely associated with AMI. Mean HbA1c and total cholesterol were significant multivariate predictors with a J-shaped relationship with non-AMI-related SCD. The AMI and SCD risk scores had an area under the curve (AUC) of 0.666 (95% confidence interval (CI) = [0.662, 0.669]) and 0.677 (95% CI = [0.673, 0.682]), respectively. CISF significantly improves prediction performance of both outcomes compared to RSF and multivariate Cox models.
Conclusion
A holistic combination of demographic, clinical and laboratory indices can be used for the risk stratification of patients with type 2 diabetes mellitus for AMI and SCD
SIMD Everywhere Optimization from ARM NEON to RISC-V Vector Extensions
Many libraries, such as OpenCV, FFmpeg, XNNPACK, and Eigen, utilize Arm or
x86 SIMD Intrinsics to optimize programs for performance. With the emergence of
RISC-V Vector Extensions (RVV), there is a need to migrate these performance
legacy codes for RVV. Currently, the migration of NEON code to RVV code
requires manual rewriting, which is a time-consuming and error-prone process.
In this work, we use the open source tool, "SIMD Everywhere" (SIMDe), to
automate the migration. Our primary task is to enhance SIMDe to enable the
conversion of ARM NEON Intrinsics types and functions to their corresponding
RVV Intrinsics types and functions. For type conversion, we devise strategies
to convert Neon Intrinsics types to RVV Intrinsics by considering the vector
length agnostic (vla) architectures. With function conversions, we analyze
commonly used conversion methods in SIMDe and develop customized conversions
for each function based on the results of RVV code generations. In our
experiments with Google XNNPACK library, our enhanced SIMDe achieves speedup
ranging from 1.51x to 5.13x compared to the original SIMDe, which does not
utilize customized RVV implementations for the conversions
Paediatric/young versus adult patients with long QT syndrome
Introduction Long QT syndrome (LQTS) is a less prevalent cardiac ion channelopathy than Brugada syndrome in Asia. The present study compared the outcomes between paediatric/young and adult LQTS patients.
Methods This was a population-based retrospective cohort study of consecutive patients diagnosed with LQTS attending public hospitals in Hong Kong. The primary outcome was spontaneous ventricular tachycardia/ventricular fibrillation (VT/VF).
Results A total of 142 LQTS (mean onset age=27±23 years old) were included. Arrhythmias other than VT/VF (HR 4.67, 95% CI (1.53 to 14.3), p=0.007), initial VT/VF (HR=3.25 (95% CI 1.29 to 8.16), p=0.012) and Schwartz score (HR=1.90 (95% CI 1.11 to 3.26), p=0.020) were predictive of the primary outcome for the overall cohort, while arrhythmias other than VT/VF (HR=5.41 (95% CI 1.36 to 21.4), p=0.016) and Schwartz score (HR=4.67 (95% CI 1.48 to 14.7), p=0.009) were predictive for the adult subgroup (>25 years old; n=58). A random survival forest model identified initial VT/VF, Schwartz score, initial QTc interval, family history of LQTS, initially asymptomatic and arrhythmias other than VT/VF as the most important variables for risk prediction.
Conclusion Clinical and ECG presentation varies between the paediatric/young and adult LQTS population. Machine learning models achieved more accurate VT/VF prediction
Risk stratification of cardiac arrhythmias and sudden cardiac death in type 2 diabetes mellitus patients receiving insulin therapy: A population-based cohort study
Introduction
Metabolic abnormalities may exacerbate the risk of adverse outcomes in patients with type 2 diabetes mellitus. The present study aims to assess the predictive value of HbA1c and lipid variability on the risks of sudden cardiac death (SCD) and incident atrial fibrillation (AF).
Methods
The retrospective observational study consists of type 2 diabetic patients prescribed with insulin, who went to publicly funded clinics and hospitals in Hong Kong between January 1, 2009 and December 31, 2009. Variability in total cholesterol, low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), triglyceride, and HbA1c were assessed through their SD and coefficient of variation. The primary outcomes were incident (1) ventricular tachycardia/ventricular fibrillation, actual or aborted SCD and (2) AF.
Results
A total of 23 329 patients (mean ± SD age: 64 ± 14 years old; 51% male; mean HbA1c 8.6 ± 1.3%) were included. On multivariable analysis, HbA1c, total cholesterol, LDL-C and triglyceride variability were found to be predictors of SCD (p < .05).
Conclusion
HbA1c and lipid variability were predictive of SCD. Therefore, poor glucose control and variability in lipid parameters in diabetic patients are associated with aborted or actual SCD. These observations suggest the need to re-evaluate the extent of glycemic control required for outcome optimization
SOAP3-dp: Fast, Accurate and Sensitive GPU-based Short Read Aligner
To tackle the exponentially increasing throughput of Next-Generation
Sequencing (NGS), most of the existing short-read aligners can be configured to
favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging
the computational power of both CPU and GPU with optimized algorithms, delivers
high speed and sensitivity simultaneously. Compared with widely adopted
aligners including BWA, Bowtie2, SeqAlto, GEM and GPU-based aligners including
BarraCUDA and CUSHAW, SOAP3-dp is two to tens of times faster, while
maintaining the highest sensitivity and lowest false discovery rate (FDR) on
Illumina reads with different lengths. Transcending its predecessor SOAP3,
which does not allow gapped alignment, SOAP3-dp by default tolerates alignment
similarity as low as 60 percent. Real data evaluation using human genome
demonstrates SOAP3-dp's power to enable more authentic variants and longer
Indels to be discovered. Fosmid sequencing shows a 9.1 percent FDR on newly
discovered deletions. SOAP3-dp natively supports BAM file format and provides a
scoring scheme same as BWA, which enables it to be integrated into existing
analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and
Tianhe-1A.Comment: 21 pages, 6 figures, submitted to PLoS ONE, additional files
available at "https://www.dropbox.com/sh/bhclhxpoiubh371/O5CO_CkXQE".
Comments most welcom
Risk of thyroid dysfunction associated with mRNA and inactivated COVID-19 vaccines: a population-based study of 2.3 million vaccine recipients
Background: In view of accumulating case reports of thyroid dysfunction following COVID-19 vaccination, we evaluated the risks of incident thyroid dysfunction following inactivated (CoronaVac) and mRNA (BNT162b2) COVID-19 vaccines using a population-based dataset. / Methods: We identified people who received COVID-19 vaccination between 23 February and 30 September 2021 from a population-based electronic health database in Hong Kong, linked to vaccination records. Thyroid dysfunction encompassed anti-thyroid drug (ATD)/levothyroxine (LT4) initiation, biochemical picture of hyperthyroidism/hypothyroidism, incident Graves’ disease (GD), and thyroiditis. A self-controlled case series design was used to estimate the incidence rate ratio (IRR) of thyroid dysfunction in a 56-day post-vaccination period compared to the baseline period (non-exposure period) using conditional Poisson regression. / Results: A total of 2,288,239 people received at least one dose of COVID-19 vaccination (57.8% BNT162b2 recipients and 42.2% CoronaVac recipients). 94.3% of BNT162b2 recipients and 92.2% of CoronaVac recipients received the second dose. Following the first dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.864, 95% CI 0.670–1.114; CoronaVac: IRR 0.707, 95% CI 0.549–0.912), LT4 initiation (BNT162b2: IRR 0.911, 95% CI 0.716–1.159; CoronaVac: IRR 0.778, 95% CI 0.618–0.981), biochemical picture of hyperthyroidism (BNT162b2: IRR 0.872, 95% CI 0.744–1.023; CoronaVac: IRR 0.830, 95% CI 0.713–0.967) or hypothyroidism (BNT162b2: IRR 1.002, 95% CI 0.838–1.199; CoronaVac: IRR 0.963, 95% CI 0.807–1.149), GD, and thyroiditis. Similarly, following the second dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.972, 95% CI 0.770–1.227; CoronaVac: IRR 0.879, 95%CI 0.693–1.116), LT4 initiation (BNT162b2: IRR 1.019, 95% CI 0.833–1.246; CoronaVac: IRR 0.768, 95% CI 0.613–0.962), hyperthyroidism (BNT162b2: IRR 1.039, 95% CI 0.899–1.201; CoronaVac: IRR 0.911, 95% CI 0.786–1.055), hypothyroidism (BNT162b2: IRR 0.935, 95% CI 0.794–1.102; CoronaVac: IRR 0.945, 95% CI 0.799–1.119), GD, and thyroiditis. Age- and sex-specific subgroup and sensitivity analyses showed consistent neutral associations between thyroid dysfunction and both types of COVID-19 vaccines. / Conclusions: Our population-based study showed no evidence of vaccine-related increase in incident hyperthyroidism or hypothyroidism with both BNT162b2 and CoronaVac
Development of a predictive risk model for all-cause mortality in patients with diabetes in Hong Kong
Introduction Patients with diabetes mellitus are risk of premature death. In this study, we developed a machine learning-driven predictive risk model for all-cause mortality among patients with type 2 diabetes mellitus using multiparametric approach with data from different domains.
Research design and methods This study used territory-wide data of patients with type 2 diabetes attending public hospitals or their associated ambulatory/outpatient facilities in Hong Kong between January 1, 2009 and December 31, 2009. The primary outcome is all-cause mortality. The association of risk variables and all-cause mortality was assessed using Cox proportional hazards models. Machine and deep learning approaches were used to improve overall survival prediction and were evaluated with fivefold cross validation method.
Results A total of 273 678 patients (mean age: 65.4±12.7 years, male: 48.2%, median follow-up: 142 (IQR=106–142) months) were included, with 91 155 deaths occurring on follow-up (33.3%; annualized mortality rate: 3.4%/year; 2.7 million patient-years). Multivariate Cox regression found the following significant predictors of all-cause mortality: age, male gender, baseline comorbidities, anemia, mean values of neutrophil-to-lymphocyte ratio, high-density lipoprotein-cholesterol, total cholesterol, triglyceride, HbA1c and fasting blood glucose (FBG), measures of variability of both HbA1c and FBG. The above parameters were incorporated into a score-based predictive risk model that had a c-statistic of 0.73 (95% CI 0.66 to 0.77), which was improved to 0.86 (0.81 to 0.90) and 0.87 (0.84 to 0.91) using random survival forests and deep survival learning models, respectively.
Conclusions A multiparametric model incorporating variables from different domains predicted all-cause mortality accurately in type 2 diabetes mellitus. The predictive and modeling capabilities of machine/deep learning survival analysis achieved more accurate predictions
Comparing the performance of published risk scores in Brugada syndrome: a multi-center cohort study.
The management of Brugada Syndrome (BrS) patients at intermediate risk of arrhythmic events remains controversial. The present study evaluated the predictive performance of different risk scores in an Asian BrS population and its intermediate risk subgroup. This retrospective cohort study included consecutive patients diagnosed with BrS from January 1 , 1997 to June 20 , 2020 from Hong Kong. The primary outcome is sustained ventricular tachyarrhythmias. Two novel risk risk scores and seven machine learning-based models (random survival forest, Ada boost classifier, Gaussian naïve Bayes, light gradient boosting machine, random forest classifier, gradient boosting classifier and decision tree classifier) were developed. The area under the receiver operator characteristic (ROC) curve (AUC) [95% confidence intervals] was compared between the different models. This study included 548 consecutive BrS patients (7% female, age at diagnosis: 50±16 years, follow-up: 84±55 months). For the whole cohort, the score developed by Sieira et al. showed the best performance (AUC: 0.806 [0.747-0.865]). A novel risk score was developed using the Sieira score and additional variables significant on univariable Cox regression (AUC: 0.855 [0.808-0.901]). A simpler score based on non-invasive results only showed a statistically comparable AUC (0.784 [0.724-0.845]), improved using random survival forests (AUC: 0.942 [0.913-0.964]). For the intermediate risk subgroup (N=274), a gradient boosting classifier model showed the best performance (AUC: 0.814 [0.791-0.832]). A simple risk score based on clinical and electrocardiographic variables showed a good performance for predicting VT/VF, improved using machine learning. Abstract: The management of Brugada Syndrome (BrS) patients at intermediate risk of arrhythmic events remains controversial. This study evaluated the predictive performance of published risk scores in a cohort of BrS patients from Hong Kong (N=548) and its intermediate risk subgroup (N=274). A novel risk score developed by modifying the best performing existing score (by. Sieira et al.) showed an area under the curve of 0.855 and 0.760 for the whole BrS cohort and the intermediate risk subgroup, respectively. The performance of the different scores was significantly improved machine learning-based methods, such as random survival forests and gradient boosting classifier. [Abstract copyright: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Adverse Cardiovascular Complications following prescription of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors: a propensity-score matched Cohort Study with competing risk analysis
Background
Programmed death-1 (PD-1) and programmed death- ligand 1 (PD-L1) inhibitors, such as pembrolizumab, nivolumab and atezolizumab, are major classes of immune checkpoint inhibitors that are increasingly used for cancer treatment. However, their use is associated with adverse cardiovascular events. We examined the incidence of new-onset cardiac complications in patients receiving PD-1 or PD-L1 inhibitors.
Methods
Patients receiving PD-1 or PD-L1 inhibitors since their launch up to 31st December 2019 at publicly funded hospitals of Hong Kong, China, without pre-existing cardiac complications were included. The primary outcome was a composite of incident heart failure, acute myocardial infarction, atrial fibrillation, or atrial flutter with the last follow-up date of 31st December 2020. Propensity score matching between PD-L1 inhibitor use and PD-1 inhibitor use with a 1:2 ratio for patient demographics, past comorbidities and non-PD-1/PD-L1 medications was performed with nearest neighbour search strategy (0.1 caliper). Univariable and multivariable Cox regression analysis models were conducted. Competing risks models and multiple propensity matching approaches were considered for sensitivity analysis.
Results
A total of 1959 patients were included. Over a median follow-up of 247 days (interquartile range [IQR]: 72-506), 320 (incidence rate [IR]: 16.31%) patients met the primary outcome after PD-1/PD-L1 treatment: 244 (IR: 12.57%) with heart failure, 38 (IR: 1.93%) with acute myocardial infarction, 54 (IR: 2.75%) with atrial fibrillation, 6 (IR: 0.31%) with atrial flutter. Compared with PD-1 inhibitor treatment, PD-L1 inhibitor treatment was significantly associated with lower risks of the composite outcome both before (hazard ratio [HR]: 0.32, 95% CI: [0.18-0.59], P value=0.0002) and after matching (HR: 0.34, 95% CI: [0.18-0.65], P value=0.001), and lower all-cause mortality risks before matching (HR: 0.77, 95% CI: [0.64-0.93], P value=0.0078) and after matching (HR: 0.80, 95% CI: [0.65-1.00], P value=0.0463). Patients who developed cardiac complications had shorter average readmission intervals and a higher number of hospitalizations after treatment with PD-1/PD-L1 inhibitors in both the unmatched and matched cohorts (P value<0.0001). Multivariable Cox regression models, competing risk analysis with cause-specific and subdistribution hazard models, and multiple propensity approaches confirmed these observations.
Conclusions
Compared with PD-1 treatment, PD-L1 treatment was significantly associated with lower risk of new onset cardiac complications and all-cause mortality both before and after propensity score matching
- …