230 research outputs found

    LA SUPERACIÓN DE DIRECTIVOS DE LA ADMINISTRACIÓN PÚBLICA EN EL CENTRO DE ESTUDIOS DE LA ADMINISTRACIÓN PÚBLICA DE LA UNIVERSIDAD DE LA HABANA

    Get PDF
    The preparation and improvement of executives and their substitutes is a task prioritized by the country's leadership and for its compliance a network of governmental and educational entities supports it. The objective of the paper is to analyze the Public Administration Studies Center experiences in the preparation and improvement of executives and officials of Public Administration. The research carried out an documentary analysis, observations, surveys and interviews with managers and officials from seven municipalities in Havana who have completed postgraduate studies at the Center for Studies of Public Administration of the University of Havana as part of their improvement. The results show the relevance and impact of the programs developed as well as some difficulties to take into account in order to improve their effectiveness.La preparación y superación de directivos y reservas, constituye una tarea priorizada por la dirección del país y para su cumplimiento se apoya en una red de entidades gubernamentales y educacionales. El objetivo del artículo es analizar las experiencias del Centro de Estudios en la Administración Pública en la preparación y superación de directivos y funcionarios de la Administración Pública. Se realizó mediante un análisis documental, observaciones, encuestas y entrevistas a directivos y funcionarios que se han graduado de los programas de posgrado en el Centro de Administración Pública de la Universidad de La Habana como parte de su superación. Los resultados evidencian la pertinencia e impacto de los programas desarrollados, así como algunas dificultades a tomar en cuenta para perfeccionarlos y mejorar su eficacia

    Search for flavor-changing neutral current interactions of the top quark mediated by a Higgs boson in proton-proton collisions at 13 TeV

    No full text
    International audienceA search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on proton-proton collision data collected in 2016-2018 at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, and corresponding to an integrated luminosity of 138 fb1^{-1}. Events containing a pair of leptons with the same-sign electric charge and at least one jet are considered. The results are used to constrain the branching fraction (B\mathcal{B}) of the top quark decaying to a Higgs boson and an up (u) or charm (c) quark. No significant excess above the estimated background was found. The observed (expected) upper limits at 95% confidence level are found to be 0.072% (0.059%) for B\mathcal{B}(t \to Hu) and 0.043% (0.062%) for B\mathcal{B}(t \to Hc). These results are combined with two other searches performed by the CMS Collaboration for flavor-changing neutral current interactions of top quarks and Higgs bosons in final states with a pair of photons or of bottom quarks. The resulting observed (expected) upper limits at 95% confidence level are 0.019% (0.027%) for B\mathcal{B}(t \to Hu) and 0.037% (0.035%) for B\mathcal{B}(t \to Hc). These results constitute the most stringent limits on these branching fractions to date

    Search for new resonances decaying to pairs of merged diphotons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for an extended Higgs sector with two new particles, X and ϕ\phi, in the process X \toϕϕ\phi\phi\to(γγ)(γγ)(\gamma\gamma)(\gamma\gamma). Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at s\sqrt{s} = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb1^{-1}. No evidence of such resonances is seen. Upper limits are set on the production cross section versus the resonance masses, representing the most sensitive search in this channel

    Overview of high-density QCD studies with the CMS experiment at the LHC

    No full text
    International audienceThe heavy ion (HI) physics program has proven to be an essential part of the overall physics program at the Large Hadron Collider at CERN. Its main purpose has been to provide a detailed characterization of the quark-gluon plasma (QGP), a deconfined state of quarks and gluons created in high-energy nucleus-nucleus collisions. From the start of the LHC HI program with lead-lead collisions, the CMS Collaboration has performed measurements using additional data sets in different center-of-mass energies with xenon-xenon, proton-lead, and proton-proton collisions. A broad collection of observables related to high-density quantum chromodynamics (QCD), precision quantum electrodynamics (QED), and even novel searches of phenomena beyond the standard model (BSM) have been studied. Major advances toward understanding the macroscopic and microscopic QGP properties were achieved at the highest temperature reached in the laboratory and for vanishingly small values of the baryon chemical potential. This article summarizes key QCD, QED, as well as BSM physics, results of the CMS HI program for the LHC Runs 1 (2010-2013) and 2 (2015-2018). It reviews findings on the partonic content of nuclei and properties of the QGP and describes the surprising QGP-like effects in collision systems smaller than lead-lead or xenon-xenon. In addition, it outlines the scientific case of using ultrarelativistic HI collisions in the coming decades to characterize the QGP with unparalleled precision and to probe novel fundamental physics phenomena

    Measurement of boosted Higgs bosons produced via vector boson fusion or gluon fusion in the H \tobbˉ\mathrm{b\bar{b}} decay mode using LHC proton-proton collision data at s\sqrt{s} = 13 TeV

    No full text
    International audienceA measurement is performed of Higgs bosons produced with high transverse momentum (pTp_\mathrm{T}) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb1^{-1}. The decay of a high-pTp_\mathrm{T} Higgs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are 4.91.6+1.9^{+1.9}_{-1.6} and 1.61.5+1.7^{+1.7}_{-1.5} for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework

    Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton

    No full text
    International audienceA search for long-lived heavy neutral leptons (HNLs) is presented, which considers the hadronic final state and coupling scenarios involving all three lepton generations in the 2-20 GeV HNL mass range for the first time. Events comprising two leptons (electrons or muons) and jets are analyzed in a data sample of proton-proton collisions, recorded with the CMS experiment at the CERN LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. A novel jet tagger, based on a deep neural network, has been developed to identify jets from an HNL decay using various features of the jet and its constituent particles. The network output can be used as a powerful discriminating tool to probe a broad range of HNL lifetimes and masses. Contributions from background processes are determined from data. No excess of events in data over the expected background is observed. Upper limits on the HNL production cross section are derived as functions of the HNL mass and the three coupling strengths VNV_{\ell\mathrm{N}} to each lepton generation \ell and presented as exclusion limits in the coupling-mass plane, as lower limits on the HNL lifetime, and on the HNL mass. In this search, the most stringent limit on the coupling strength is obtained for pure muon coupling scenarios; values of VμN2>\lvert V_{\mu\mathrm{N}}\rvert^{2}\gt 5 (4)×\times107^{-7} are excluded for Dirac (Majorana) HNLs with a mass of 10 GeV at a confidence level of 95% that correspond to proper decay lengths of 17 (10) mm

    Search for baryon number violation in top quark production and decay using proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb1 ^{-1} . Candidate events are selected by requiring two oppositely-charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb1^{-1}. Candidate events are selected by requiring two oppositely-charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions

    Measurement of energy correlators inside jets and determination of the strong coupling αS(mZ) \alpha_\mathrm{S} (m_\mathrm{Z})

    No full text
    Energy correlators that describe energy-weighted distances between two or three particles in a jet are measured using an event sample of s= \sqrt{s} = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb1 ^{-1} . The measured distributions reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the two measured distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading logarithmic accuracy matched to a next-to-leading order calculation, the strong coupling is determined at the Z boson mass: αS(mZ)= \alpha_\mathrm{S} (m_\mathrm{Z}) = 0.1229 0.0050+0.0040 ^{+0.0040}_{-0.0050} , the most precise αS(mZ) \alpha_\mathrm{S} (m_\mathrm{Z}) value obtained using jet substructure observables.Energy correlators that describe energy-weighted distances between two or three particles in a jet are measured using an event sample of s\sqrt{s} = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb1^{-1}. The measured distributions reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the two measured distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading logarithmic accuracy matched to a next-to-leading order calculation, the strong coupling is determined at the Z boson mass: αS(mZ)\alpha_\mathrm{S}(m_\mathrm{Z}) = 0.12290.0050+0.0040^{+0.0040}_{-0.0050}, the most precise αS(mZ)\alpha_\mathrm{S}(m_\mathrm{Z}) value obtained using jet substructure observables

    Observation of the Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- decay and studies of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe first observation of the decay Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- and measurement of the branching ratio of Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- to Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^- are presented. The J/ψ\psi and ψ\psi(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at s\sqrt{s} = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb1^{-1}. The branching fraction ratio is measured to be B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^-)/B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^-) = 0.840.19+0.21^{+0.21}_{-0.19} (stat) ±\pm 0.10 (syst) ±\pm 0.02 (B\mathcal{B}), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon mass and natural width are also presented, using the Ξbπ+\Xi_\mathrm{b}^-\pi^+ final state, where the Ξb\Xi^-_\mathrm{b} baryon is reconstructed through the decays J/ψΞ\psi \Xi^-, ψ\psi(2S)Ξ\Xi^-, J/ψΛ\psi \LambdaK^-, and J/ψΣ0\psi \Sigma^0K^-. Finally, the fraction of the Ξb\Xi^-_\mathrm{b} baryons produced from Ξb0\Xi_\mathrm{b}^{\ast{}0} decays is determined

    Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H \to aa \tobbˉbbˉ\mathrm{b\bar{b}b\bar{b}}. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 <\ltmam_\mathrm{a}<\lt 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp \to WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction B\mathcal{B}(H \to aa \to bbˉbbˉ\mathrm{b\bar{b}b\bar{b}}). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for ma=m_\mathrm{a} = 20 GeV to 0.36 for ma=m_\mathrm{a} = 60 GeV, complementing other measurements in the μμττ\mu\mu\tau\tau, ττττ\tau\tau\tau\tau and bb\ell\ell (=\ell= μ\mu,τ\tau) channels
    corecore