34 research outputs found
Medium Access Control for Wireless Sensor Networks based on Impulse Radio Ultra Wideband
This paper describes a detailed performance evaluation of distributed Medium
Access Control (MAC) protocols for Wireless Sensor Networks based on Impulse
Radio Ultra Wideband (IR-UWB) Physical layer (PHY). Two main classes of Medium
Access Control protocol have been considered: Slotted and UnSlotted with
reliability. The reliability is based on Automatic Repeat ReQuest (ARQ). The
performance evaluation is performed using a complete Wireless Sensor Networks
(WSN) simulator built on the Global Mobile Information System Simulator
(GloMoSim). The optimal operating parameters are first discussed for IR-UWB in
terms of slot size, retransmission delay and the number of retransmission, then
a comparison between IR-UWB and other transmission techniques in terms of
reliability latency and power efficiency
Simulation Platform for Wireless Sensor Networks Based on Impulse Radio Ultra Wide Band
Impulse Radio Ultra Wide Band (IR-UWB) is a promising technology to address
Wireless Sensor Network (WSN) constraints. However, existing network simulation
tools do not provide a complete WSN simulation architecture, with the IR-UWB
specificities at the PHYsical (PHY) and the Medium Access Control (MAC) layers.
In this paper, we propose a WSN simulation architecture based on the IR-UWB
technique. At the PHY layer, we take into account the pulse collision by
dealing with the pulse propagation delay. We also modelled MAC protocols
specific to IRUWB, for WSN applications. To completely fit the WSN simulation
requirements, we propose a generic and reusable sensor and sensing channel
model. Most of the WSN application performances can be evaluated thanks to the
proposed simulation architecture. The proposed models are implemented on a
scalable and well known network simulator: Global Mobile Information System
Simulator (GloMoSim). However, they can be reused for all other packet based
simulation platforms
Channel Capacity Limitations versus Hardware Implementation for UWB Impulse Radio Communications
Starting from the Shannon channel capacity, we propose an IR-UWB channel
capacity based on the delay spread for multipath time variant channels. This
IR-UWB channel capacity is obtained from the no ISI (Inter Symbol Interference)
assumption and for binary modulations. The impact of the kind of implementation
is considered on the IR-UWB channel capacity. This study is lead for mixed and
mostly digital implementation. The key parameters and theirs impacts on the
channel capacity are exposed in each case: the data converters for mostly
digital implementations and the pulse generator capabilities for mixed
implementations. Finally, these two implementations are compared from a data
rate point of view. Their behaviors regarding an increase of the operating
frequency are also studied
Performance Evaluation of Impluse Radio Ultra Wide Band Wireless Sensor Networks
This paper presents a performance evaluation of Wireless Sensor Networks
(WSN) based on Impulse Radio Ultra Wideband (IR-UWB) over a new simulation
platform developed for this purpose. The simulation platform is built on an
existing network simulator: Global Mobile Information System Simulator
(GloMoSim). It mainly focuses on the accurately modeling of IR-UWB PHYsical
(PHY) and Medium Access Control (MAC) layer. Pulse collision is modeled
according to the used time hopping sequence (THS) and the pulse propagation
delay in order to increase the simulation fidelity. It also includes a
detection and identification application based on a new sensing channel and new
sensor device models. The proposed architecture is generic so it can be reused
for any simulation platform. The performance evaluation is based on one of the
typical WSN applications: local area protection, where sensor nodes are densely
scattered in an access regulated area in order to detect, identify and report
non authorized accesses to a base station for analysis. Two networks topologies
using different protocol stacks are investigated. Their performance evaluation
is presented in terms of reliability and latency
Reconfigurable IR-UWB radio interface for wireless sensor networks
Les travaux présentés lors de cette thèse s’inscrivent dans le cadre des réseaux de microsystèmes communicants dont les réseaux de capteurs sont l’exemple le plus connu. La problématique adressée est la conception d’une interface radio communicante répondant aux besoins spécifiques des microsystèmes communicants : simplicité, faible coût, faible consommation, faible encombrement, haut débit et reconfigurabilité. Les technologies actuelles sans fil comme le WiFi, le Bluetooth, et Zigbee ne sont pas en mesure de répondre à ces contraintes spécifiques. L’étude se focalise sur la technologie IR-UWB (Impulse Radio Ultra-WideBand). Dans un premier temps, une étude conjointe sur la capacité du canal et l’implémentation matérielle est menée pour déterminer l’architecture optimale des émetteurs-récepteurs en IR-UWB. Cette étude propose l’utilisation d’une architecture multi bandes IR-UWB (MB-IR-UWB) à implémentation mixte à 60 GHz avec des antennes directives. Cette solution est optimisée sur les critères de débit et puissance consommée. Afin de supporter l’ensemble des besoins des applications des réseaux de microsystèmes communicants et l’évolution de l’environnement d’opération, la reconfigurabilité doit être implémentée dans les émetteur-récepteurs proposés. Ces travaux présentent une proposition de reconfigurabilité par paramètres, qui permet de supporter la plus grande gamme de reconfigurabilités multi propriétés (débit, taux d’erreur, portée, puissance consommée, …) de l’état de l’art. Enfin, pour valider par la mesure les travaux sur la reconfigurabilité et sur les architectures d’émetteur-récepteurs IR-UWB, des implémentations FPGA et ASIC sont réalisées. Un nouveau procédé de synchronisation et démodulation conjointe reconfigurable est proposé dans le récepteur IR-UWB BPSK S-Rake. Les mesures montrent que le circuit de traitement proposé améliore les performances en synchronisation, démodulation, efficacité, débit du réseau, consommation et complexité du circuit. L’émetteur-récepteur IR-UWB reconfigurable proposé atteint un débit et une gamme de reconfigurabilité supérieure à l’état de l’art.The research work presented in this thesis is situated in the framework of wireless sensor networks (WSNs). The issue addressed is the design of a radio interface answering the specific needs of WSNs: simplicity, low cost, low power, small size, high data rate and reconfigurability. Current wireless technologies like WiFi, Bluetooth, and Zigbee are not able to respond to these requirements. Thus this study focuses on Impulse Radio Ultra-WideBand (IR-UWB) technology. At first, a joint study of the channel capacity and the hardware implementation is carried out to determine the optimal architecture of IR-UWB transceivers. This study proposes an architecture using multi-band IR-UWB (MB-UWB-IR) with a mixed implementation at 60 GHz with directional antennas. This solution is optimized according to the criteria of data rate and power consumption. To support the all the needs of WSN applications and to adapt to the evolution of the WSN’s environment, reconfigurability must be implemented in the proposed IR-UWB transceiver. This thesis presents a new solution: the reconfigurability by parameters. It supports the widest range of multi-property reconfigurability (with respect to data rate, bit error rate, radio range, power consumption, ...) of the state of the art. Finally, to validate these techniques by measurements, FPGA and ASIC implementations are realized by using the reconfigurability and the IR-UWB transceiver architecture proposed. A new method for joint synchronization and demodulation is proposed for a reconfigurable IR-UWB BPSK S-Rake receiver. The measurements show that the proposed technique improves the circuit performance: synchronization, demodulation, efficiency, network throughput, power consumption and complexity of the circuit. The proposed IR-UWB reconfigurable transceiver achieves a data rate and a wider range of reconfigurability compared to the state of the ar