21 research outputs found

    N,N′-Dicyclo­hexyl­ethyl­enediammonium dichloride

    Get PDF
    In the title compound, C14H30N2 2+·2Cl−, the N,N′-dicyclo­hexyl­ethyl­enediammonium cation posseses crystallographic symmetry, and thus the compound crystallizes with two formula units per unit cell. In the crystal, the cations and anions are linked by N—H⋯Cl hydrogen bonds, giving a two-dimensional network with {6,3} topology

    The Headgroup (A)Symmetry Strongly Determines the Aggregation Behavior of Single-Chain Phenylene-Modified Bolalipids and Their Miscibility with Classical Phospholipids

    Get PDF
    In the present work, we describe the synthesis of two single-chain phenylene-modified bolalipids, namely PC-C17pPhC17-PC and PC-C17pPhC17-OH, with either symmetrical (phosphocholine) or asymmetrical (phosphocholine and hydroxyl) headgroups using a Sonogashira cross-coupling reaction as key step. The temperature-dependent aggregation behavior of both bolalipids in aqueous suspension was studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, small angle neutron scattering (SANS), and X-ray scattering. We show that different headgroup symmetries lead to a change in the aggregation behavior: Whereas PC-C17pPhC17-PC forms nanofibers with a diameter of 5.7 nm that transform into small ellipsoidal micelles at 23 °C, the PC-C17pPhC17-OH self-assembles into lamellae with bolalipid molecules in an antiparallel orientation up to high temperatures. Furthermore, the mixing behavior of both bolalipids with bilayer-forming phospholipids (DPPC and DSPC) was studied by means of DSC and TEM. The aim was to stabilize bilayer membranes formed of phospholipids in order to improve these mixed lipid vesicles for drug delivery purposes. We show that the symmetrical PC-C17pPhC17-PC is miscible with DPPC and DSPC; however, closed lipid vesicles are not observed, and elongated micelles and bilayer fragments are found instead. In contrast, the asymmetrical PC-C17pPhC17-OH shows no miscibility with phospholipids at all

    Constraining Polymers into β-Turns: Miscibility and Phase Segregation Effects in Lipid Monolayers

    No full text
    Abstract: Investigation of model biomembranes and their interactions with natural or synthetic macromolecules are of great interest to design membrane systems with specific properties such as drug-delivery. Here we study the behavior of amphiphilic β-turn mimetic polymer conjugates at the air–water interface and their interactions with lipid model membranes. For this endeavor we synthesized two different types of conjugates containing either hydrophobic polyisobutylene (PIB, Mn = 5000 g·mol−1) or helical poly(n-hexyl isocyanate) (PHIC, Mn = 4000 g·mol−1), both polymers being immiscible, whereas polyisobutylene as a hydrophobic polymer can incorporate into lipid membranes. The conjugates were investigated using Langmuir-film techniques coupled with epifluorescence microscopy and AFM (Atomic Force Microscopy), in addition to their phase behavior in mixed lipid/polymer membranes composed of DPPC (dipalmitoyl-sn-glycero-3-phosphocholine). It was found that the DPPC monolayers are strongly disturbed by the presence of the polymer conjugates and that domain formation of the polymer conjugates occurs at high surface pressures (π > 30 mN·m−1)
    corecore