113 research outputs found

    Embryonic and post-embryonic utilization and subcellular localization of the nuclear receptor SpSHR2 in the sea urchin

    Get PDF
    SpSHR2 (Strongylocentrotus purpuratus steroid hormone receptor 2) is a nuclear receptor, encoded by a maternal RNA in the sea urchin embryo. These maternal SpSHR2 transcripts, which are present in all cells, persist until the blastula stage and then are rapidly turned over. A small fraction of the embryonic SpSHR2 protein is maternal, but the majority of this nuclear receptor in the embryo is the product of new synthesis, presumably from the maternal RNA after fertilization. In agreement with the mRNA distribution, the SpSHR2 protein is also detected in all embryonic cells. Contrary to the RNA though, the SpSHR2 protein persists throughout embryonic development to the pluteus stage, long after the mRNA is depleted. Following fertilization and as soon as the 2-cell stage, the cytoplasmic SpSHR2 protein enters rapidly into the embryonic nuclei where it appears in the form of speckles. During subsequent stages (from fourth cleavage onward), SpSHR2 resides in speckled form in both the nucleus and the cytoplasm of the embryonic cells. The cytoplasmic localization of SpSHR2 differs between polarized and non-polarized cells, maintaining an apical position in the ectoderm and endoderm versus a uniform distribution in mesenchyme cells. Following the end of embryonic development (pluteus stage), the SpSHR2 protein is depleted from all tissues. During the ensuing four weeks of larval development, the SpSHR2 is not detected in either the larval or the rudiment cells which will give rise to the adult. Just prior to metamorphosis, at about 35 days post-fertilization, the protein is detected again but in contrast to the uniform distribution in the early embryo, the larval SpSHR2 is specifically expressed in cells of the mouth epithelium and the epaulettes. In adult ovaries and testes, SpSHR2 is specifically detected in the myoepithelial cells surrounding the ovarioles and the testicular acini. Nuclear SpSHR2 in blastula extracts binds to the C1R hormone response element in the upstream promoter region of the CyIIIb actin gene indicating that the latter may be a target of this nuclear receptor in the sea urchin embryo

    Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGFβ2-bioenergetics-mitochondrial priming.

    Get PDF
    The impact of EGFR-mutant NSCLC precision therapy is limited by acquired resistance despite initial excellent response. Classic studies of EGFR-mutant clinical resistance to precision therapy were based on tumor rebiopsies late during clinical tumor progression on therapy. Here, we characterized a novel non-mutational early adaptive drug-escape in EGFR-mutant lung tumor cells only days after therapy initiation, that is MET-independent. The drug-escape cell states were analyzed by integrated transcriptomic and metabolomics profiling uncovering a central role for autocrine TGFβ2 in mediating cellular plasticity through profound cellular adaptive Omics reprogramming, with common mechanistic link to prosurvival mitochondrial priming. Cells undergoing early adaptive drug escape are in proliferative-metabolic quiescent, with enhanced EMT-ness and stem cell signaling, exhibiting global bioenergetics suppression including reverse Warburg, and are susceptible to glutamine deprivation and TGFβ2 inhibition. Our study further supports a preemptive therapeutic targeting of bioenergetics and mitochondrial priming to impact early drug-escape emergence using EGFR precision inhibitor combined with broad BH3-mimetic to interrupt BCL-2/BCL-xL together, but not BCL-2 alone

    The C-Band All-Sky Survey: Instrument design, status, and first-look data

    Get PDF
    The C-Band All-Sky Survey (C-BASS) aims to produce sensitive, all-sky maps of diffuse Galactic emission at 5 GHz in total intensity and linear polarization. These maps will be used (with other surveys) to separate the several astrophysical components contributing to microwave emission, and in particular will allow an accurate map of synchrotron emission to be produced for the subtraction of foregrounds from measurements of the polarized Cosmic Microwave Background. We describe the design of the analog instrument, the optics of our 6.1 m dish at the Owens Valley Radio Observatory, the status of observations, and first-look data.Comment: 10 pages, 11 figures, published in Proceedings of SPIE MIllimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010), Vol. 7741, 77411I-1 - 77411I-1

    The Optical-Near-IR Spectrum of the M87 Jet From HST Observations

    Get PDF
    We present 1998 HST observations of M87 which yield the first single-epoch optical and radio-optical spectral index images of the jet at 0.150.15'' resolution. We find 0.67 \approx 0.67, comparable to previous measurements, and 0.9 \approx 0.9 (FνναF_\nu \propto \nu^{-\alpha}), slightly flatter than previous workers. Reasons for this discrepancy are discussed. These observations reveal a large variety of spectral slopes. Bright knots exhibit flatter spectra than interknot regions. The flattest spectra (αo0.50.6\alpha_o \sim 0.5-0.6; comparable to or flatter than αro\alpha_{ro}) are found in two inner jet knots (D-East and HST-1) which contain the fastest superluminal components. In knots A, B and C, αo\alpha_o and αro\alpha_{ro} are essentially anti-correlated. Near the flux maxima of knots HST-1 and F, changes in αro\alpha_{ro} lag changes in αo\alpha_o, but in knots D and E, the opposite relationship is observed. This is further evidence that radio and optical emissions in the M87 jet come from substantially different physical regions. The delays observed in the inner jet are consistent with localized particle acceleration, with tacc<<tcoolt_{acc} << t_{cool} for optically emitting electrons in knots HST-1 and F, and tacctcoolt_{acc} \sim t_{cool} for optically emitting electrons in knots D and E. Synchrotron models yield \nu_B \gsim 10^{16} Hz for knots D, A and B, and somewhat lower values, νB10151016\nu_B \sim 10^{15}- 10^{16} Hz, in other regions. If X-ray emissions from knots A, B and D are co-spatial with optical and radio emission, we can strongly rule out the ``continuous injection'' model. Because of the short lifetimes of X-ray synchrotron emitting particles, the X-ray emission likely fills volumes much smaller than the optical emission regions.Comment: Text 17 pages, 3 Tables, 11 figures, accepted by Ap

    Polarimetry and Unification of Low-Redshift Radio Galaxies

    Full text link
    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRG) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRG show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRG. Classification as NLRG, broad-line radio galaxy (BLRG), or quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased towards objects known in advance to be polarized, but the combination of our results with those of Hill, Goodrich and DePoy (1996) show that at least 6 out of a complete, volume and flux-limited sample of 9 FR II NLRG have broad lines, seen either in polarization or P_alpha.Comment: To appear in November 1999 Astronomical Journal. 49 pages, 13 figure

    The C-Band All-Sky Survey (C-BASS): New Constraints on the Integrated Radio Spectrum of M 31

    Full text link
    The Andromeda galaxy (M31) is our closest neighbouring spiral galaxy, making it an ideal target for studying the physics of the interstellar medium in a galaxy very similar to our own. Using new observations of M31 at 4.76GHz by the C-Band All-Sky Survey (C-BASS), and all available radio data at 11^\circ resolution, we produce the integrated spectrum and put new constraints on the synchrotron spectral index and anomalous microwave emission (AME) from M31. We use aperture photometry and spectral modelling to fit for the integrated spectrum of M31, and subtract a comprehensive model of nearby background radio sources. The AME in M31 is detected at 3σ3\sigma significance with a peak near 30GHz and flux density 0.27±0.090.27\pm0.09Jy. The synchrotron spectral index of M31 is flatter than our own Galaxy at α=0.66±0.03\alpha = -0.66 \pm 0.03 with no strong evidence of spectral curvature. The emissivity of AME, averaged over the total emission from M31 is lower than typical AME sources in our Galaxy, implying that AME is not uniformly distributed throughout M31 and instead is likely confined to sub-regions -- this will need to be confirmed using future higher resolution observations around 20--30GHz.Comment: 16 pages, 6 figures, submitted to MNRA

    The Jet and Circumnuclear Environment of 3C 293

    Full text link
    We present the new HST near-infrared polarimetry, broad and narrow-band imaging, and MERLIN 4.5GHz Multi-Frequency Synthesis radio imaging of 3C 293, a unique radio galaxy whose host is an obvious merger remnant, in an exceptionally under-dense region of space. We have discovered near-infrared, optical, and ultra-violet synchrotron emission from the jet. In the optical, the jet is mostly obscured by a dust lane, but three knots are clear in our HST NICMOS images at 1.6 and 2.0 microns, clearly aligning with features in the radio. The outer jet knot is highly polarized (~15%) at 2 microns, confirming the synchrotron emission mechanism. The radio-IR spectral index steepens significantly with distance from the nucleus, as in 3C 273 and in contrast to M 87. The inner knot is visible (with hindsight) on the WFPC2 and STIS images obtained for the earlier 3CR HST snapshot surveys. There is no [Fe II] emission seen associated with the jet, constraining the role of shock-induced ionisation by the jet. Overall there is a strong implication that the NIR jet emission is indeed synchrotron. From our NIR images, the core of the galaxy is clearly identifiable with the main feature in the western extension of the radio ``jet'' image, although no unresolved AGN component is identifiable even at K-band, consistent with an FRII-like nucleus obscured by an optically thick torus. The galaxy appears to have a single nucleus, with any multiple nuclei falling within the central </~100 pc.Comment: ApJ accepted. 31 pages, 12 figures reproduced here at low resolution. High resolution version available from http://www.stsci.edu/~floyd/BIBLIOTECA/3c293

    Ten Million Degree Gas in M 17 and the Rosette Nebula: X-ray Flows in Galactic H II Regions

    Full text link
    We present the first high-spatial-resolution X-ray images of two high-mass star forming regions, the Omega Nebula (M 17) and the Rosette Nebula (NGC 2237--2246), obtained with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) instrument. The massive clusters powering these H II regions are resolved at the arcsecond level into >900 (M 17) and >300 (Rosette) stellar sources similar to those seen in closer young stellar clusters. However, we also detect soft diffuse X-ray emission on parsec scales that is spatially and spectrally distinct from the point source population. The diffuse emission has luminosity L_x ~ 3.4e33 ergs/s in M~17 with plasma energy components at kT ~0.13 and ~0.6 keV (1.5 and 7 MK), while in Rosette it has L_x \~6e32 ergs/s with plasma energy components at kT ~0.06 and ~0.8 keV (0.7 and 9 MK). This extended emission most likely arises from the fast O-star winds thermalized either by wind-wind collisions or by a termination shock against the surrounding media. We establish that only a small portion of the wind energy and mass appears in the observed diffuse X-ray plasma; in these blister H II regions, we suspect that most of it flows without cooling into the low-density interstellar medium. These data provide compelling observational evidence that strong wind shocks are present in H II regions.Comment: 35 pages, including 11 figures; to appear in ApJ, August 20, 2003. A version with high-resolution figures is available at ftp://ftp.astro.psu.edu/pub/townsley/diffuse.ps.g

    Multimessenger astronomy with the Einstein Telescope

    Full text link
    Gravitational waves (GWs) are expected to play a crucial role in the development of multimessenger astrophysics. The combination of GW observations with other astrophysical triggers, such as from gamma-ray and X-ray satellites, optical/radio telescopes, and neutrino detectors allows us to decipher science that would otherwise be inaccessible. In this paper, we provide a broad review from the multimessenger perspective of the science reach offered by the third generation interferometric GW detectors and by the Einstein Telescope (ET) in particular. We focus on cosmic transients, and base our estimates on the results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope. Minor corrections include

    Wildfire Risk as a Socioecological Pathology

    Get PDF
    Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological “pathology”: that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales. Assessments of wildfire risk could benefit from recognizing and accounting for these interactions in terms of socioecological systems, also known as coupled natural and human systems (CNHS). We characterize the primary social and ecological dimensions of the wildfire risk pathology, paying particular attention to the governance system around wildfire risk, and suggest strategies to mitigate the pathology through innovative planning approaches, analytical tools, and policies. We caution that even with a clear understanding of the problem and possible solutions, the system by which human actors govern fire-prone forests may evolve incrementally in imperfect ways and can be expected to resist change even as we learn better ways to manage CNHS
    corecore