6 research outputs found

    The efficacy of immediate versus delayed antibiotic administration on bacterial growth and biofilm production of selected strains of uropathogenic Escherichia coli and Pseudomonas aeruginosa

    No full text
    Purpose The treatment of urinary tract infections (UTI) with antibiotics is commonly used, but recurrence and antibiotic resistance have been growing and concerning clinicians. We studied whether the rapid onset of a protective biofilm may be responsible for the lack of effectiveness of antibiotics against selected bacteria. Materials and Methods Two established uropathogenic Escherichia coli strains, UTI89 and CFT073, and two Pseudomonas aeruginosa strains, PA01 and Boston-41501, were studied to establish a reliable biofilm formation process. Bacterial growth (BG) was determined by optical density at 600 nm (OD 600) using a spectrophotometer, while biofilm formation (BF) using crystal violet staining was measured at OD 550. Next, these bacterial strains were treated with clinically relevant antibiotics, ciprofloxacin HCl (200 ng/mL and 2 μg/mL), nitrofurantoin (20 μg/mL and 40 μg/mL) and ampicillin (50 μg/mL) at time points of 0 (T0) or after 6 hours of culture (T6). All measurements, including controls (bacteria -1% DMSO), were done in triplicates and repeated three times for consistency. Results The tested antibiotics effectively inhibited both BG and BF when administered at T0 for UPEC strains, but not when the antibiotic administration started 6 hours later. For Pseudomonas strains, only Ciprofloxacin was able to significantly inhibit bacterial growth at T0 but only at the higher concentration of 2 μg/mL for T6. Conclusion When established UPEC and Pseudomonas bacteria were allowed to culture for 6 hours before initialization of treatment, the therapeutic effect of selected antibiotics was greatly suppressed when compared to immediate treatment, probably as a result of the protective nature of the biofilm

    IFN gamma-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing

    No full text
    IFNγ, a potent cytokine known to modulate tumor immunity and tumoricidal effects, is highly elevated in patients with prostate cancer after radiation. In this study, we demonstrate that IFNγ can induce epithelial-to-mesenchymal transition (EMT) in prostate cancer cells via the JAK-STAT signaling pathway, leading to the transcription of IFN-stimulated genes (ISG) such as IFN-induced tetratricopeptide repeat 5 (IFIT5). We unveil a new function of IFIT5 complex in degrading precursor miRNAs (pre-miRNA) that includes pre-miR-363 from the miR-106a-363 cluster as well as pre-miR-101 and pre-miR-128, who share a similar 5'-end structure with pre-miR-363. These suppressive miRNAs exerted a similar function by targeting EMT transcription factors in prostate cancer cells. Depletion of IFIT5 decreased IFNγ-induced cell invasiveness in vitro and lung metastasis in vivo. IFIT5 was highly elevated in high-grade prostate cancer and its expression inversely correlated with these suppressive miRNAs. Altogether, this study unveils a prometastatic role of the IFNγ pathway via a new mechanism of action, which raises concerns about its clinical application.Significance: A unique IFIT5-XRN1 complex involved in the turnover of specific tumor suppressive microRNAs is the underlying mechanism of IFNγ-induced epithelial-to-mesenchymal transition in prostate cancer.See related commentary by Liu and Gao, p. 1032
    corecore