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Cutaneous squamous cell carcinoma (cuSCC) is diagnosed over 700,000 times annually, 

claiming up to 8,800 lives annually, in the US alone (Karia et al., 2013). No standard targeted 

therapy exists for cuSCC. Exome sequencing of cuSCC suggest that loss-of-function mutations 

in major tumor suppressor genes such as NOTCH1/2, TP53, and CDKN2A drive tumor 

development (Li et al., 2015; Pickering et al., 2014; South et al., 2014; Wang et al., 2011). No 

activated oncogene is consistently present in cuSCC. EGFR/HER2 inhibitors, the most tested 

targeted therapy to date, have had limited success, and whether responses correlate with 

mutation, amplification, or overexpression of ErbB family genes is unresolved (Stratigos et al., 

2015).   

 

BRAF inhibitors (BRAFi) induce cuSCC formation (Oberholzer et al., 2012; Su et al., 2012) by 

increasing MEK/ERK signaling in BRAF wild-type contexts (Menzies et al., 2013). While other 

mechanisms contribute (Vin et al., 2013), co-administration of MEK inhibitors (MEKi) with 

BRAFi dramatically abrogates cuSCC induction (Flaherty et al., 2012). Elevated phospho-

MEK/ERK is also seen in sporadic human cuSCC (Dajee et al., 2003; Einspahr et al., 2012). 

With these rationales in mind, we tested if MEK signaling is necessary for cuSCC induction and 

maintenance, and whether MEK inhibition is an actionable approach for treatment and 

chemoprevention of sporadic cuSCC. 

 

To test the effects of MEK inhibition across cuSCC cases with different etiologies and 

mutational profiles, we tested responses to two MEKi, trametinib and cobimetinib, in 10 lines 

from both immunocompromised and immunocompetent patients (Vin et al., 2013; Watt et al., 

2011). Nine out of ten lines responded to both trametinib and cobimetinib at the highest 
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concentrations tested (1 µM and 10 µM, respectively), but sensitivity between lines at lower 

doses was heterogeneous (Figure 1a, Supplementary Figure S1). No clear segregation of 

sensitive and insensitive lines was revealed, and mutational status of RAS or EGFR did not 

correlate with sensitivity (Supplementary Table S1). 

 

To confirm the on-target activity of trametinib and cobimetinib, signal transduction pathway 

changes in MEK/ERK were probed. Downstream phospho-ERK (pERK) was strongly 

suppressed at 72 hr by MEKi (Figure 1b), although phosphorylated MEK increased with MEKi 

treatment. Similar results were obtained with cobimetinib after 72 hr, although the levels of 

pERK in SRB1 and SRB12, the least sensitive lines tested, were more modestly suppressed with 

25 nM treatment (Figure 1c), suggesting incomplete signaling inhibition could explain 

differences in sensitivity between lines. 

 

We next sought to characterize the cellular response that accompanied the effectiveness of MEK 

inhibition. In four cuSCC cell lines spanning a range of sensitivities to MEKi, cell cycle 

progression as measured by EdU nucleotide incorporation was strongly (from 2.5 to 37.9-fold) 

down-regulated by treatment with both MEK inhibitors (Figure 1d, Supplementary Figure S2), 

with no significant apoptosis. Consistent with this, we observed a dose-dependent decrease in 

Cyclin D1 levels following both trametinib and cobimetinib treatment (Figure 1f). No change in 

Cyclin D1 was detected in SRB12 with either treatment, consistent with this line being the least 

sensitive in our viability screen (Figure 1a, Supplementary Figure S1).  MEK inhibitor treated 

cuSCC cells became enlarged and flattened (Supplementary Figure S3), a morphological 

hallmark of senescence (Munoz-Espin and Serrano, 2014). Staining for senescence associated β-
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galactosidase (SA-β-gal) activity revealed induction in 9.2 ± 2.0 to 18.6 ± 1.8% of cells in treated 

populations (p<0.05, Figure 1e, Supplementary Figure S3.). Additionally, p21 (CDKN1A), a cell-

cycle inhibitor and marker of senescence (Munoz-Espin and Serrano, 2014), was induced in all 

tested lines after trametinib and cobimetinib treatment, except in cobimetinib-treated SRB12 

cells, which were relatively resistant (Figure 1g). We also observed that phospho-AKT levels 

were unchanged only in relatively resistant lines, and that co-targeting AKT resulted in enhanced 

responses (Supplementary Figure S4).  

 

To test if MEK inhibition could reduce tumor growth in-vivo, we established SRB1 tumor 

xenografts in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice and treated with oral trametinib 

(2mg/kg/day). At sacrifice, average vehicle tumor volume was 3.1-fold larger than trametinib 

treated tumors (p<0.0001, Fig 1h-i). Western-blot analysis of tumor lysates confirmed that 

trametinib significantly reduced pERK/tERK levels in-vivo on an average of 9.8-fold (p=0.03, 

Figure 1j-k), demonstrating successful target engagement in tumors. Together, these data suggest 

MEK tumor signaling drives proliferation and prevents tumor suppressive senescence induction 

in cuSCC cells and tumors (Figure 1l), an effect that can be exploited by targeting MEK in-vivo.  

 

To better study the effects of MEK inhibition on both cuSCC induction and growth, oral 

trametinib (2 mg/kg/day) and cobimetinib (10 mg/kg/day) were tested in a UV-driven Hairless 

mouse model of cuSCC using chronic, low-dose, solar simulated UV light (12.5 kJ/m2 UVB 

weekly administered across three doses, Figure 2a), which more faithfully recapitulates human 

cuSCC molecularly than chemical carcinogenesis models (Vin et al., 2013). Over the course of 

treatment, control mice formed substantially more tumors than those treated with trametinib or 
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cobimetinib (Figure 2b). Spaghetti plots of individual lesions and comparisons of lesion sizes at 

sacrifice confirmed that trametinib completely suppressed detectable net tumor induction, while 

cobimetinib reduced tumor number versus baseline (Figure 2c-d).  

 

Tracking of individual tumors revealed that trametinib-treated tumors had a 2.4-fold reduced 

tumor volume increase versus control, while cobimetinib-treated ones showed 5.0-fold growth 

suppression (Figure 2e). Ki67 staining was reduced by 24% trametinib and 18% for cobimetinib 

(p=0.002, p=0.02, Figure 2f-g), and target pathway engagement was confirmed with suppression 

of ERK activation by up to 39% (Supplementary Figure S5). Overall, 62-69% of papillomas 

responded and 50-75% of cuSCCs responded to MEKi (Supplementary Figure S6). 

  

Our results suggest that MEK is an effective target for preventing and treating cuSCC. Inhibition 

of MEK causes senescence, but not apoptosis, of cuSCC cells, with observed synergism with 

AKT inhibition. The near-complete abrogation of cuSCC induction in our UV-driven model with 

MEKi indicates that MEK activation is rate limiting for sporadic cuSCC induction, as it appears 

to be for BRAFi-induced lesions (Flaherty et al., 2012). While responses of existing tumors were 

heterogeneous, significant suppression of proliferation and phospho-ERK was observed in 

tumors of treated mice.  We conclude that MEK inhibition may be a basis for molecularly 

targeted chemoprevention and therapy of cuSCC. 
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FIGURE LEGENDS 

Figure 1. MEK inhibition prevents cell cycling and induces senescence in human models of 

cuSCC. (a) Trametinib and cobimetinib viability dose response curves measured by Cell Titer 

Glo after 72 hr of continuous drug treatment. Half-maximal effect (IC50), maximal effect (Emax), 

and area under the curve (AUC) measurements are graphically represented in Supplementary 

Figure S1. (b-c) MEK/ERK signal transduction western blotting after 72 hr of treatment of 

MEKi at indicated dose. (d) EdU cell cycle staining after 72 hr treatment with trametinib (150 

nM) or cobimetinib (250 nM). Cells were labeled with 10 µM EdU for 2.5 hours before fixing, 

counterstaining, and quantifying with the Nexcelom Celligo System. (e) Senescence associated -

β-galactosidase senescence staining with X-gal after 72 hr treatment with trametinib (150 nM) 

or cobimetinib (250 nM). Positive cells were quantified manually. (f) Western blot for cell cycle 

marker Cyclin D1 after 72 hr of MEKi treatment. (g) Western blot for senescence marker p21 

after 72 hours of MEKi treatment indicated. (h) Representative photographs of vehicle and oral 

trametinib-treated (2mg/kg/day) SRB1 xenograft in NSG mice at sacrifice. (i) Tumor volume, 

tracked by caliper measurement, after treatment initiation. (j-k) Quantitation and representative 

western blot from SRB1 NSG tumor lysates for phospho-ERK engagement. (l) Model of MEK 

involvement in cuSCC tumorigenesis and mechanism of MEKi in preventing cuSCC tumor 

growth. All error bars are S.E.M. and average at least three independent experiments. *p<0.05, 

**p<0.01, †p<0.001.  

 

Figure 2. MEK inhibition prevents tumor induction and growth in a spontaneous mouse 

model of cuSCC. (a) Schematic of experimental design. Full details are in Supplementary 

Methods.  (b) Representative image of vehicle, oral trametinib (2mg/kg/day), and oral 
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cobimetinib (10mg/kg/day)-treated mice before sacrifice. Large lesions (cuSCC) and smaller 

‘papillomas’ are observable on the backs of each mouse. (c) Spaghetti plots of changes in tumor 

number over time. Each line represents one mouse. Matched controls are shown in separate 

trametinib and cobimetinib plots for clarity. (d) End-point quantification of change in tumor 

number at sacrifice. (Box and whisker plots represent interquartitle range, ‘+’ denotes the mean, 

Left to right: n = 11,10,10, One-sided t-test against no tumor net induction, i.e. 0). (e) End-point 

quantification of tumor size, measuring fold-change in tumor volume from tumors existing at 

treatment initiation. Note the y-axis is broken into two segments (Box and whisker plots 

represent interquartile (IQR) range with outliers excluded by Tukey’s criteria, ≥ 1.5 IQR; ‘+’ 

represents mean values; Left to right: n = 51, 53, 45; t-test compares treatments to vehicle 

control). (f) Ki-67 staining of FFPE fixed lesions at sacrifice. Scale bar (yellow) is 300 µm. (g) 

Automated quantification of Ki-67 positive nuclei processed from whole lesion sections. 

(Horizontal line is mean; error bars are S.E.M; Left to right: n = 19, 20, 20; t-test compares 

treatments to vehicle control) *p<0.05, **p<0.01, †p<0.001. 
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