9,954 research outputs found
Policing the Arctic: The North Slope of Alaska
An abbreviated version of this paper, which excluded the NSBDPS employee survey results, was published as:
Trostle, Lawrence C.; & Angell, John E. (1994). "Policing the Arctic: The North Slope of Alaska." Journal of Contemporary Criminal Justice 10(2): 95–108 (May 1994). (http://dx.doi.org/10.1177/104398629401000203).
A related report with employee comments from the survey concerning Public Safety Officer (PSO) assignment lengths and rotation policies is available at https://scholarworks.alaska.edu/handle/11122/10007.Geographic size and lack of roads, among other factors, contribute to unique difficulties in providing effective law enforcement and public safety services to residents of the North Slope Borough of Alaska. Despite comprehensive plans laid in the mid-1970s, the North Slope Borough has not been successful in implementing a broad, multicultural community public safety organizational design. The more traditional professional law enforcement agency which has evolved is perceived by some people as having community and employee relations problems. This paper provides a brief history of law enforcement on the North Slope and presents selected data from a 1993 survey of employees of the North Slope Borough Department of Public Safety (NSBDPS). The data support a hypothesis that indigenous personnel with strong roots in a minority community will be more committed to the community police organization than would be employees without such roots.North Slope Borough Department of Public SafetyIntroduction /
Traditional Justice Administration /
Government /
Department of Public Safety /
North Slope Department of Public Safety Goals /
Research Support for a Multicultural Community Social Control Operation /
Conclusion /
Reference
Preliminary estimates of radiation exposures for manned interplanetary missions from anomalously large solar flare events
Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events
Solar-flare shielding with Regolith at a lunar-base site
The Langley high energy nucleon transport computer code BRYNTRN is used to predict time-integrated radiation dose levels at the lunar surface due to high proton flux from solar flares. The study addresses the shielding requirements for candidate lunar habitat configurations necessary to protect crew members from these large and unpredictable radiation fluxes. Three solar proton events have been analyzed, and variations in radiation intensity in a shield medium due to the various primary particle energy distributions are predicted. Radiation dose predictions are made for various slab thicknesses of a lunar soil model. Results are also presented in the form of dose patterns within specific habitat configurations shielded with lunar material
Quantification of protoporphyrin IX accumulation in glioblastoma cells – A new technique
5-Aminolevulinic Acid (5-ALA) is a precursor of heme synthesis. A metabolite, protoporphyrin IX (PpIX), selectively accumulates in neoplastic tissue including glioblastoma. Presurgical administration of 5-ALA forms the basis of fluorescence-guided resection (FGR) of glioblastoma (GBM) tumors. However, not all gliomas accumulate sufficient quantities of PpIX to fluoresce, thus limiting the utility of FGR. We therefore developed an assay to determine cellular and pharmacological factors that impact PpIX fluorescence in GBM. This assay takes advantage of a GBM cell line engineered to express yellow fluorescent protein. Methods. The human GBM cell line U87MG was transfected with a YFP expression vector. After treatment with a series of 5-ALA doses, both PpIX and YFP fluorescence were measured. The ratio of PpIX to YFP fluorescence was calculated. Results. YFP fluorescence permitted the quantification of cell numbers and did not interfere with 5-ALA metabolism. The PpIX/YFP fluorescence ratio provided accurate relative PpIX levels, allowing for the assessment of PpIX accumulation in tissue. Conclusion. Constitutive YFP expression strongly correlates with cell number and permits PpIX quantification. Absolute PpIX fluorescence alone does not provide information regarding PpIX accumulation within the cells. Our research indicates that our PpIX/YFP ratio assay may be a promising model for in vitro 5-ALA testing and its interactions with other compounds during FGR surgery
Estimates of galactic cosmic ray shielding requirements during solar minimum
Estimates of radiation risk from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different arbitrary constituents per layer. Calculated galactic cosmic ray fluxes, dose and dose equivalents behind various thicknesses of aluminum, water and liquid hydrogen shielding are presented for the solar minimum period. Estimates of risk to the skin and the blood-forming organs (BFO) are made using 0-cm and 5-cm depth dose/dose equivalent values, respectively, for water. These results indicate that at least 3.5 g/sq cm (3.5 cm) of water, or 6.5 g/sq cm (2.4 cm) of aluminum, or 1.0 g/sq cm (14 cm) of liquid hydrogen shielding is required to reduce the annual exposure below the currently recommended BFO limit of 0.5 Sv. Because of large uncertainties in fragmentation parameters and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as a factor of 2 or more. The effects of these potential exposure uncertainties or shield thickness requirements are analyzed
Radiation exposure for manned Mars surface missions
The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection
Time and Life: Applications of Modern Chronobiology
Chronobiology is that branch of science which objectively quantifies and explores mechanisms of biological time structure. It is an integrating discipline that impacts on all forms of life. When physiological functions are plotted along a time scale, they appear as regularly repetitive wave forms with means, amplitudes, phasing and periods. In nature these rhythms are found to have many frequencies, from a fraction of a second (ultradian) to a year or more (infradian or circannual); and those with periods of about one day (circadian) have been explored extensively. Examples of several circadian rhythms are given for experimental animals and man. Evidence is presented to show that it is particularly important to consider biological rhythmicity when interpreting experimental results or attempting to extrapolate from one species to another. An organism is indeed a different biochemical and morphological entity at different times, and it may be expected to react differently to a stimulus at different circadian phases. By taking advantage of natural rhythms in the susceptability to drugs, it is possible to optimize chemotherapy and radiotherapy for cancer and other diseases
Space radiation dose analysis for solar flare of August 1989
Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed
Zirconium and titanium complexes supported by tridentate LX2 ligands having two phenolates linked to furan, thiophene, and pyridine donors: precatalysts for propylene polymerization and oligomerization
Zirconium and titanium complexes with tridentate bis(phenolate)-donor (donor = pyridine, furan and thiophene) ligands have been prepared and investigated for applications in propylene polymerization. The ligand framework has two X-type phenolates connected to the flat heterocyclic L-type donor at the 2,6- or 2.5- positions via direct ring-ring (sp^2-sp^2)linkages. The zirconium and titanium dibenzyl complexes have been prepared by treatment of the neutral bis(phenol)-donor ligands with M(CH_2Ph)_4 (M = Ti, Zr) with loss of 2 equiv of toluene. Titanium complexes with bis(phenolate)pyridine and -furan ligands and zirconium complexes with bis(phenolate)pyridine and -thiophene ligands have been characterized by single-crystal X-ray diffraction. The solid-state structures of the bis(benzyl)titanium complexes are roughly C_2 symmetric, while the zirconium derivatives display C_s and C^1 symmetry. The bis(phenolate)pyridine titanium complexes are structurally affected by the size of the substituents substituents (CMe_3 or CEt_3) ortho to the oxygens, the larger group leading to a larger C_2 distortion. Both titanium and zirconium dibenzyl complexes were found to be catalyst precursors for the polymerization of propylene upon activation with methylaluminoxane (MAO). The activities observed for the zirconium complexes are particularly notable, exceeding 10^6 g polypropylene/mol Zr center dot h in some cases. The bis(phenolate)pyridine titanium analogues are about 10^3 times less active, but generate polymers of higher molecular weight. When activated with MAO, the titanium bis(phenolate)furan and bis(phenolate)thiophene systems were found to promote propylene oligomerization
- …