19,955 research outputs found

    Data Assimilation: A Mathematical Introduction

    Full text link
    These notes provide a systematic mathematical treatment of the subject of data assimilation

    Robustness of Majorana Fermion induced Fractional Josephson Effect

    Full text link
    It is shown in previous works that the coupling between two Majorana end states in superconducting quantum wires leads to fractional Josephson effect. However, in realistic experimental conditions, multiple bands of the wires are occupied and the Majorana end states are accompanied by other fermionic end states. This raises the question concerning the robustness of fractional Josephson effect in these situations. In this work, we show that the absence of the avoided energy crossing which gives rise to the fractional Josephson effect is robust, even when the Majorana fermions are coupled with arbitrary strengths to other fermions. Moreover, we calculate the temperature dependence of the fractional Josephson current and show that it is suppressed by thermal excitations to the other fermion bound states.Comment: 4+ pages, 3 figure

    Optimizing photon indistinguishability in the emission from incoherently-excited semiconductor quantum dots

    Full text link
    Most optical quantum devices require deterministic single-photon emitters. Schemes so far demonstrated in the solid state imply an energy relaxation which tends to spoil the coherent nature of the time evolution, and with it the photon indistinguishability. We focus our theoretical investigation on semiconductor quantum dots embedded in microcavities. Simple and general relations are identified between the photon indistinguishability and the collection efficiency. The identification of the key parameters and of their interplay provides clear indications for the device optimization

    Production of photons by the parametric resonance in the dynamical Casimir effect

    Get PDF
    We calculate the number of photons produced by the parametric resonance in a cavity with vibrating walls. We consider the case that the frequency of vibrating wall is nω1(n=1,2,3,...)n \omega_1 (n=1,2,3,...) which is a generalization of other works considering only 2ω12 \omega_1, where ω1\omega_1 is the fundamental-mode frequency of the electromagnetic field in the cavity. For the calculation of time-evolution of quantum fields, we introduce a new method which is borrowed from the time-dependent perturbation theory of the usual quantum mechanics. This perturbation method makes it possible to calculate the photon number for any nn and to observe clearly the effect of the parametric resonance.Comment: 15 pages, RevTeX, no figure

    Ultra-high vacuum material and lubricants test system Final report

    Get PDF
    Ultrahigh vacuum system with accurate tensile test capability for material and lubricant test

    Multiphoton entanglement through a Bell multiport beam splitter

    Full text link
    Multiphoton entanglement is an important resource for linear optics quantum computing. Here we show that a wide range of highly entangled multiphoton states, including W-states, can be prepared by interfering single photons inside a Bell multiport beam splitter and using postselection. A successful state preparation is indicated by the collection of one photon per output port. An advantage of the Bell multiport beam splitter is that it redirects the photons without changing their inner degrees of freedom. The described setup can therefore be used to generate polarisation, time-bin and frequency multiphoton entanglement, even when using only a single photon source.Comment: 8 pages, 2 figures, carefully revised version, references adde

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed

    The Non-homogeneous Poisson Process for Fast Radio Burst Rates

    Get PDF
    This paper presents the non-homogeneous Poisson process (NHPP) for modeling the rate of fast radio bursts (FRBs) and other infrequently observed astronomical events. The NHPP, well-known in statistics, can model changes in the rate as a function of both astronomical features and the details of an observing campaign. This is particularly helpful for rare events like FRBs because the NHPP can combine information across surveys, making the most of all available information. The goal of the paper is two-fold. First, it is intended to be a tutorial on the use of the NHPP. Second, we build an NHPP model that incorporates beam patterns and a power law flux distribution for the rate of FRBs. Using information from 12 surveys including 15 detections, we find an all-sky FRB rate of 586.88 events per sky per day above a flux of 1 Jy (95\% CI: 271.86, 923.72) and a flux power-law index of 0.91 (95\% CI: 0.57, 1.25). Our rate is lower than other published rates, but consistent with the rate given in Champion et al. 2016.Comment: 19 pages, 2 figure
    • …
    corecore