58 research outputs found

    Influence of general anaesthesia on slow waves of intracranial pressure.

    Get PDF
    OBJECTIVE: Slow vasogenic intracranial pressure (ICP) waves are spontaneous ICP oscillations with a low frequency bandwidth of 0.3-4 cycles/min (B-waves). B-waves reflect dynamic oscillations in cerebral blood volume associated with autoregulatory cerebral vasodilation and vasoconstriction. This study quantifies the effects of general anaesthesia (GA) on the magnitude of B-waves compared to natural sleep and conscious state. MATERIALS AND METHODS: The magnitude of B-waves was assessed in 4 groups of 30 patients each with clinical indications for ICP monitoring. Normal pressure hydrocephalus patients undergoing Cerebrospinal Fluid (CSF) infusion studies in the conscious state (GROUP A) and under GA (GROUP B), and hydrocephalus patients undergoing overnight ICP monitoring during physiological sleep (GROUP C) were compared to deeply sedated traumatic brain injury (TBI) patients with well-controlled ICP during the first night of Intensive Care Unit (ICU) stay (GROUP D). RESULTS: A total of 120 patients were included. During CSF infusion studies, the magnitude of slow waves was higher in conscious patients ( GROUP A: 0.23+/-0.10 mm Hg) when compared to anaesthetised patients ( GROUP B: 0.15+/-0.10 mm Hg; p = 0.011). Overnight magnitude of slow waves was higher in patients during natural sleep (GROUP C: 0.20+/-0.13 mm Hg) when compared to TBI patients under deep sedation (GROUP D: 0.11+/- 0.09 mm Hg; p = 0.002). CONCLUSION: GA and deep sedation are associated with a reduced magnitude of B-waves. ICP monitoring carried out under GA is affected by iatrogenic suppression of slow vasogenic waves of ICP. Accounting for the effects of anaesthesia on vasogenic waves may prevent the misidentification of potential shunt-responders as non-responders.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/01616412.2016.1189200

    Acute respiratory distress syndrome in traumatic brain injury: How do we manage it?

    Get PDF
    Traumatic brain injury (TBI) is an important cause of morbidity and mortality worldwide. TBI patients frequently suffer from lung complications and acute respiratory distress syndrome (ARDS), which is associated with poor clinical outcomes. Moreover, the association between TBI and ARDS in trauma patients is well recognized. Mechanical ventilation of patients with a concomitance of acute brain injury and lung injury can present significant challenges. Frequently, guidelines recommending management strategies for patients with traumatic brain injuries come into conflict with what is now considered best ventilator practice. In this review, we will explore the strategies of the best practice in the ventilatory management of patients with ARDS and TBI, concentrating on those areas in which a conflict exists. We will discuss the use of ventilator strategies such as protective ventilation, high positive end expiratory pressure (PEEP), prone position, recruitment maneuvers (RMs), as well as techniques which at present are used for 'rescue' in ARDS (including extracorporeal membrane oxygenation) in patients with TBI. Furthermore, general principles of fluid, haemodynamic and hemoglobin management will be discussed. Currently, there are inadequate data addressing the safety or efficacy of ventilator strategies used in ARDS in adult patients with TBI. At present, choice of ventilator rescue strategies is best decided on a case-by-case basis in conjunction with local expertise

    Мобильное приложение для курьерской службы доставки «Ptichka»

    Get PDF
    Целью работы является реализация кроссплатформенного мобильного приложения для курьерской службы доставки "Ptichka". В процессе выполнения выпускной квалификационной работы проводился сравнительный анализ технологий разработки мобильных приложении?, с целью выбора наиболее подходящей для решения целей данной работы.The aim of the work is implementation a cross-platform mobile application for courier delivery service "Ptichka"

    Effects of Prone Position and Positive End-Expiratory Pressure on Noninvasive Estimators of ICP: A Pilot Study.

    Get PDF
    BACKGROUND: Prone positioning and positive end-expiratory pressure can improve pulmonary gas exchange and respiratory mechanics. However, they may be associated with the development of intracranial hypertension. Intracranial pressure (ICP) can be noninvasively estimated from the sonographic measurement of the optic nerve sheath diameter (ONSD) and from the transcranial Doppler analysis of the pulsatility (ICPPI) and the diastolic component (ICPFVd) of the velocity waveform. METHODS: The effect of the prone positioning and positive end-expiratory pressure on ONSD, ICPFVd, and ICPPI was assessed in a prospective study of 30 patients undergoing spine surgery. One-way repeated measures analysis of variance, fixed-effect multivariate regression models, and receiver operating characteristic analyses were used to analyze numerical data. RESULTS: The mean values of ONSD, ICPFVd, and ICPPI significantly increased after change from supine to prone position. Receiver operating characteristic analyses demonstrated that, among the noninvasive methods, the mean ONSD measure had the greatest area under the curve signifying it is the most effective in distinguishing a hypothetical change in ICP between supine and prone positioning (0.86±0.034 [0.79 to 0.92]). A cutoff of 0.43 cm was found to be a best separator of ONSD value between supine and prone with a specificity of 75.0 and a sensitivity of 86.7. CONCLUSIONS: Noninvasive ICP estimation may be useful in patients at risk of developing intracranial hypertension who require prone positioning.DC and MC are partially supported by NIHR Brain Injury Healthcare Technology Co-operative, Cambridge, UK. JD is supported by a Woolf Fisher Scholarship (NZ)

    Safety profile of enhanced thromboprophylaxis strategies for critically ill COVID-19 patients during the first wave of the pandemic. observational report from 28 European intensive care units

    Get PDF
    INTRODUCTION: Critical illness from SARS-CoV-2 infection (COVID-19) is associated with a high burden of pulmonary embolism (PE) and thromboembolic events despite standard thromboprophylaxis. Available guidance is discordant, ranging from standard care to the use of therapeutic anticoagulation for enhanced thromboprophylaxis (ET). Local ET protocols have been empirically determined and are generally intermediate between standard prophylaxis and full anticoagulation. Concerns have been raised in regard to the potential risk of haemorrhage associated with therapeutic anticoagulation. This report describes the prevalence and safety of ET strategies in European Intensive Care Unit (ICUs) and their association with outcomes during the first wave of the COVID pandemic, with particular focus on haemorrhagic complications and ICU mortality.METHODS: Retrospective, observational, multi-centre study including adult critically ill COVID-19 patients. Anonymised data included demographics, clinical characteristics, thromboprophylaxis and/or anticoagulation treatment. Critical haemorrhage was defined as intracranial haemorrhage or bleeding requiring red blood cells transfusion. Survival was collected at ICU discharge. A multivariable mixed effects generalised linear model analysis matched for the propensity for receiving ET was constructed for both ICU mortality and critical haemorrhage.RESULTS: A total of 852 (79% male, age 66 [37-85] years) patients were included from 28 ICUs. Median body mass index and ICU length of stay were 27.7 (25.1-30.7) Kg/m2 and 13(7-22) days, respectively. Thromboembolic events were reported in 146 patients (17.1%), of those 78 (9.2%) were PE. ICU mortality occurred in 335/852 (39.3%) patients. ET was used in 274 (32.1%) patients, and it was independently associated with significant reduction in ICU mortality (log odds=0.64 [95% CIs 0.18-1.1; p=0.0069]) but not an increased risk of critical haemorrhage (log odds=0.187 [95%CI -0.591 to -0.964; p=0.64]).CONCLUSIONS: In a cohort of critically ill patients with a high prevalence of thromboembolic events, ET was associated with reduced ICU mortality without an increased burden of haemorrhagic complications. This study suggests ET strategies are safe and associated with favourable outcomes. Whilst full anticoagulation has been questioned for prophylaxis in these patients, our results suggest that there may nevertheless be a role for enhanced / intermediate levels of prophylaxis. Clinical trials investigating causal relationship between intermediate thromboprophylaxis and clinical outcomes are urgently needed

    Разработка системы управления теплопотреблением административного здания

    Get PDF
    В выпускной квалификационной работе рассматривается система управления теплопотреблением административного здания в г. Томске по адресу ул. Предвокзальная 49/3. Согласно федеральному закону №263-ФЗ о энергосбережением, был создан проект по внедрению системы диспетчерезации и автоматизации теплового узла. При разработке проекта был произведен выбор оборудования и рассчитаны гидравлические потери, социальная ответственность и экономический эффект внедрения данной системы.Final qualifying work contains a review of a system that manages the heat consumption in the administrative building in Tomsk, Predvokzalnaya street 49/3. According to the federal law #263 about energy-saving, one of the projects was developed to implement a dispatch and automation system for the heat node. During the development of the project the equipment was selected, the hydraulic losses were calculated same as the social responsibility and economic effect of the introduction of this system

    Safety profile of enhanced thromboprophylaxis strategies for critically ill COVID-19 patients during the first wave of the pandemic: observational report from 28 European intensive care units.

    Get PDF
    INTRODUCTION: Critical illness from SARS-CoV-2 infection (COVID-19) is associated with a high burden of pulmonary embolism (PE) and thromboembolic events despite standard thromboprophylaxis. Available guidance is discordant, ranging from standard care to the use of therapeutic anticoagulation for enhanced thromboprophylaxis (ET). Local ET protocols have been empirically determined and are generally intermediate between standard prophylaxis and full anticoagulation. Concerns have been raised in regard to the potential risk of haemorrhage associated with therapeutic anticoagulation. This report describes the prevalence and safety of ET strategies in European Intensive Care Unit (ICUs) and their association with outcomes during the first wave of the COVID pandemic, with particular focus on haemorrhagic complications and ICU mortality. METHODS: Retrospective, observational, multi-centre study including adult critically ill COVID-19 patients. Anonymised data included demographics, clinical characteristics, thromboprophylaxis and/or anticoagulation treatment. Critical haemorrhage was defined as intracranial haemorrhage or bleeding requiring red blood cells transfusion. Survival was collected at ICU discharge. A multivariable mixed effects generalised linear model analysis matched for the propensity for receiving ET was constructed for both ICU mortality and critical haemorrhage. RESULTS: A total of 852 (79% male, age 66 [37-85] years) patients were included from 28 ICUs. Median body mass index and ICU length of stay were 27.7 (25.1-30.7) Kg/m2 and 13 (7-22) days, respectively. Thromboembolic events were reported in 146 patients (17.1%), of those 78 (9.2%) were PE. ICU mortality occurred in 335/852 (39.3%) patients. ET was used in 274 (32.1%) patients, and it was independently associated with significant reduction in ICU mortality (log odds = 0.64 [95% CIs 0.18-1.1; p = 0.0069]) but not an increased risk of critical haemorrhage (log odds = 0.187 [95%CI - 0.591 to - 0.964; p = 0.64]). CONCLUSIONS: In a cohort of critically ill patients with a high prevalence of thromboembolic events, ET was associated with reduced ICU mortality without an increased burden of haemorrhagic complications. This study suggests ET strategies are safe and associated with favourable outcomes. Whilst full anticoagulation has been questioned for prophylaxis in these patients, our results suggest that there may nevertheless be a role for enhanced / intermediate levels of prophylaxis. Clinical trials investigating causal relationship between intermediate thromboprophylaxis and clinical outcomes are urgently needed

    Targeted temperature management in patients with intracerebral haemorrhage, subarachnoid haemorrhage, or acute ischaemic stroke: updated consensus guideline recommendations by the Neuroprotective Therapy Consensus Review (NTCR) group

    Get PDF
    Background: There is a lack of consistent, evidence-based guidelines for the management of patients with fever after brain injury. The aim was to update previously published consensus recommendations on targeted temperature management after intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in patients who require admission to critical care. Methods: A modified Delphi consensus, the Neuroprotective Therapy Consensus Review (NTCR), included 19 international neuro-intensive care experts with a subspecialty interest in the acute management of intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke. An online, anonymised survey was completed ahead of the meeting before the group came together to consolidate consensus and finalise recommendations on targeted temperature management. A threshold of ≥80% for consensus was set for all statements. Results: Recommendations were formulated based on existing evidence, literature review, and consensus. After intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in patients who require critical care admission, core temperature should ideally be monitored continuously and maintained between 36.0°C and 37.5°C using automated feedback-controlled devices, where possible. Targeted temperature management should be commenced within 1 h of first fever identification with appropriate diagnosis and treatment of infection, maintained for as long as the brain remains at risk of secondary injury, and rewarming should be controlled. Shivering should be monitored and managed to limit risk of secondary injury. Following a single protocol for targeted temperature management across intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke is desirable. Conclusions: Based on a modified Delphi expert consensus process, these guidelines aim to improve the quality of targeted temperature management for patients after intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in critical care, highlighting the need for further research to improve clinical guidelines in this setting

    Targeted temperature control following traumatic brain injury:ESICM/NACCS best practice consensus recommendations

    Get PDF
    Aims and scope: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. Methods: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. Results: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0–37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. Conclusions: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.</p
    corecore