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Introduction

Acute respiratory distress syndrome (ARDS) is a life 
threatening condition characterized by refractory 
hypoxemia and stiff lungs (1-3). According to the recent 
Berlin Definition (4), ARDS is defined as an acute hypoxemic 
respiratory distress syndrome, not fully explained by cardiac 
failure occurring within one week of a known clinical 

insult or new or worsening respiratory symptoms, with 
bilateral opacities on chest X-ray (Table 1, Figure 1). A major 
component of ARDS is lung tissue inflammation.

In the Berlin Definition there is no more use of the term 
acute lung injury (ALI) and the wedge pressure measurement 
was abandoned because ARDS may coexist with hydrostatic 
oedema caused by cardiac failure or fluid overload, furthermore 
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the value of using pulmonary artery catheterization was 
questioned due to insertion risk (4) (Table 2). 

Several ventilatory strategies have been demonstrated 
to be useful in ARDS population, including the use of 
protective ventilation by using low tidal volume (TV) 
ventilation and limiting plateau pressure no more than 
30 cmH2O with allowing permissive hypercapnia, prone 
positioning, the use of high positive end expiratory pressure 
(PEEP), recruitment manoeuvres (RM), extra corporeal 
membrane oxygenation (ECMO) and extra corporeal 
carbon dioxide removal (ECCO2R) (5-7).

The utility of these strategies has been proved in 
several groups of patients, both during anaesthesia and in 
critical care (8,9); however, their use in neurocritical care 
patients is still uncertain, as most of these lung protective 
ventilatory strategies are associated with an increased risk of 
intracranial hypertension (9).

There are tight interactions between cerebral and 
respiratory dynamics, so mechanical ventilation can have 
effect on cerebral perfusion and represent a potential 
burden for iatrogenic secondary brain damage (10). ARDS 
is common in neurocritical care patients (11-13) and lung 
injury is associated with worse outcome (12) and longer 
ICU length of stay (14).

Traumatic brain injury (TBI) is a major cause of 
mortality and morbidity and it is the most common cause of 
death under the age of 40 (15-17) (Figure 2). 

According to the recently published Brain Trauma 
Foundation Guidelines, the main targets in TBI population 
are to avoid hypoxia and cerebral hypoperfusion (18). In 
particular, the central goal is the prevention of hypoxic 
secondary insults through the maintenance of an adequate 
cerebral perfusion pressure (CPP) and cerebral oxygen 
delivery.

Figure 1 Computed tomography (left panel), and chest X-ray (right side) of a patient with ARDS.

Table 1 ARDS Berlin Definition

Timing Acute onset: within one week of a known clinical insult or new/worsening respiratory symptoms

Chest imaging Bilateral opacities visible (on chest radiograph or computed tomography scan), not fully explained by effusions, 
nodules, masses, or lobar/lung collapse

Origin of edema Respiratory failure associated to known risk factors and not fully explained by cardiac failure or fluid overload. Need 
objective assessment (e.g., echocardiography) to exclude hydrostatic edema if no risk factor present

Oxygenation

Mild 200 mmHg < PaO2/FiO2 <300 mmHg with PEEP >5 cmH2O

Moderate 100 mmHg < PaO2/FiO2 <200 mmHg with PEEP >5 cmH2O

Severe PaO2/FiO2 <100 mmHg with PEEP >5 cmH2O
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Mechanical ventilation is very often necessary in the 
brain-injured patient and respiratory failure can be multi 
etiological [aspiration pneumonia, pulmonary contusion 
related to chest trauma, neurogenic pulmonary oedema, 
transfusion-related acute lung injury (TRALI) etc.].

When a concomitance of TBI and ARDS occurs, 
the ventilatory management can be very challenging 
as ventilatory targets are often in conflict in these two 
pathologies.

Recruitment maneuvers (RMs), prone positioning and 
the use of high PEEP can improve pulmonary gas exchange 
and respiratory mechanics by reducing ventilation—
perfusion mismatch, and by opening collapsed alveoli 

reducing intrapulmonary shunt (19,20). However, they 
may be associated with the development of intracranial 
hypertension (21) by impairing jugular venous outflow and 
by impeding cerebral venous return to the right atrium. 
Moreover, they can increase ICP and decrease mean arterial 
pressure, both resulting in decreased CPP (22).

Literature is lacking regarding the management of 
patients with a concomitance of TBI and ARDS, and there 
is therefore need of a pragmatic approach to this group of 
patients. 

The aim of this manuscript is to review and describe 
the different ventilatory strategies in patients with a 
concomitance of TBI and ARDS.

Figure 2 Computed tomography in two patients with traumatic brain injury (TBI). (A) diffuse brain swelling with traumatic subarachnoidal 
haemorrage; (B) devastating traumatic brain injury with multiple intracerebral haemorrages after decompressive craniectomy.

Table 2 The American European Consensus Conference (AECC) definition of acute lung injury and acute respiratory distress syndrome (ARDS) 
[1994]

Diagnostic criteria for acute lung injury (ALI)

Time: acute onset

Oxygenation: PaO2/FiO2 ≤300 mmHg (regardless of PEEP level used)

CXR: bilateral infiltrates

Pulmonary capillary pressure ≤18 mmHg/No evidence of left atrial hypertension

Diagnostic criteria for ARDS

Same as ALI, except for oxygenation: PaO2/FiO2 ≤200 mmHg

PEEP, positive end expiratory pressure; CXR, chest X-ray.
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Ventilatory targets (Table 3)

Arterial oxygen partial pressure (PaO2)

What really matters to the brain after TBI is to avoid 
hypoxemia, which has long been identified as a significant 
secondary insult following TBI and associated with poor 
outcome (24,25). PaO2 target can be efficiently directed 
on brain tissue oxygen tension (PbO2) or on jugular 
venous saturation (SjvO2 of <50%) (18). The effect on 
mortality and poor outcome of hypoxemia in TBI has been 
confirmed by the analysis of the IMPACT study database, 
a cohort of more than 9,000 patients with TBI recruited 
to randomized controlled trials and series dating back to 
the 1980s (26). The IMPACT analysis showed that arterial 
hypoxemia results in a decreased cerebral oxygen delivery, 
which causes cerebral vasodilatation, and an increase in 
ICP. A transcranial Doppler study in healthy volunteers 
found that the inflection point of cerebral vasodilatation 
is at PaO2 =58 mmHg or SpO2 of 90% (27). Current 
guidelines recommend avoidance of PaO2 <60 mmHg and 
maintenance of normoxia (18-22,24-28). The ARDSNet 
target of PaO2 is 55–80 mmHg seems therefore to be too 
low to be safely applied to patients with TBI (29). 

PaCO2 and TV

The ARDSNet trial (29) demonstrated a decreased 
mortality and days of mechanical ventilation in patients 
with ARDS ventilated with TV of 6 mL/Kg compared 
to patients ventilated with 12 mL/kg (29). As expected, 
patients ventilated with lower TV had a higher mean PaCO2 
than those in the traditional group (44 vs. 40 mmHg),  
and permissive hypercapnia as a consequence of protective 
ventilation is commonly accepted in patients with 
ARDS. However, hypercapnia is associated with cerebral 
vasodilation and consequent increased ICP, and can be 
dangerous in patients with TBI, and hypocapnia has 
been suggested to be a useful strategy to reduce ICP. 
According to the Brain Trauma Foundation Guidelines (18), 
prolonged prophylactic hyperventilation with PaCO2 of 
<25 mmHg is not recommended as first line therapy to 
reduce ICP, and hyperventilation should be avoided during 
the first 24 hours after injury when cerebral blood flow 
(CBF) is often critically reduced. Hyperventilation can be 
detrimental, as severe hypocapnia and consequent cerebral 
vasoconstriction can determine brain tissue hypoxia and 
compromise compliance and blood flow velocities (30,31); 

Table 3 TBI and ARDS: ventilatory targets and strategies

Ventilatory TBI ARDS

PaO2 Normoxia: PaO2 >60 mmHg (Brain Trauma Foundation); 
PaO2 >97 mmHg (UK Transfer Guidelines) 

PaO2 55–88 mmHg (ARDS network)

PaCO2 Normocapnia PaCO2 ranges from 35–45 mmHg;  
prolonged prophylactic hyperventilation with  
PaCO2 ≤25 mmHg is not recommended

pH >7.30, permissive hypercapnia accepted

PEEP PEEP < ICP, provide MAP is maintained Incremental FiO2/PEEP combination 

Plateau Pressure ≤30 cmH2O ≤30 cmH2O

Prone positioning Reasonable to attempt when severe hypoxemia, with strict 
neuromonitoring

Improve PaO2/FiO2 ratio; suggestion to use prone 
position when P/F <150 mmHg [Guérin et al., (23)]

Recruitment maneuvers Reasonable to attempt when severe hypoxemia, with strict 
neuromonitoring

Incremental FiO2/PEEP combination

iNO No evidence of benefit Limited evidence available, rescue therapy?

ECCO2R Rescue therapy, could be considered individually
(limited evidence available)

Rescue therapy, could be considered individually  
(limited evidence available)

ECMO Reasonable to attempt in selected cases; use of  
heparin needs further studies

Improves outcome in patients referred to ECMO  
centers

TBI, traumatic brain injury; ARDS, acute respiratory distress syndrome; PaO2, arterial oxygen partial pressure; PaCO2, arterial carbon  
dioxide partial tension; PEEP, positive end expiratory pressure; ICP, intra cranial pressure; MAP, mean arterial pressure; ECCO2R, extra-
corporeal carbon dioxide removal.
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if hyperventilation is used, oxygen jugular saturation 
(SjO2) or brain tissue oxygen partial pressure (BtpO2) 
measurement are recommended to monitor oxygen delivery 
(IIB recommendation) (17). Grubb et al. (32) demonstrated 
that cerebral blood volume (CBV) is linearly related to 
PaCO2. Therefore, in TBI patients the standard of care is 
to ventilate to low normocapnia (17) (PaCO2 between 33.75 
and 37.5 mmHg, equivalent to 4.5 to 5 KPa), but this may 
be a challenge in ARDS patients. Furthermore, high TV 
ventilation in patient with TBI has been associated with 
development of ARDS (14), as it has been shown that the 
proportion of induced ARDS increases with the higher 
initial TV, in particular with mean TV ≥10 mL/Kg (14).

All in, when ARDS and TBI coexist, a balance needs 
to be found between CO2 control and lung protection. 
Potentially, there are not absolute contraindications to 

the use of protective ventilation in TBI; the PaCO2 values 
should be set case by case according to ICP. Moreover, 
multimodal brain monitoring such as microdyialysis 
catheters or brain parenchymal oxygen electrode may 
allow intensivists to tolerate a higher PaCO2, if cerebral 
metabolism remains intact.

Positive end-expiratory pressure

The use of PEEP has been considered very controversial 
in TBI patients, because the raised mean intrathoracic 
pressure related to PEEP can reduce cerebral venous 
return and consequently increase ICP (Figure 3). Cerebral 
perfusion during increased ICP is better described by 
a Starling Resistor (collapsible tube) than by Hagen-
Poiseuille’ law (rigid tube). Accordingly, the water-fall 

Figure 3 Invasive (through ICP Bolt) and non invasive ICP (through optic nerve sheath diameter) monitoring in a patient with TBI and 
ARDS during recruitment manoeuvres and increased levels of PEEP. Initially, ICP is below 20 mmHg (mean ONSD =5.2), with PEEP =8, 
with stable arterial blood pressure (ABP) and cerebral perfusion pressure (CPP). After recruitment manoeuvres and setting PEEP at 16, 
ICP spikes up >20 mmHg, with ABP and CPP increase (ONSD =7 mm). PaCO2 remained constant during the procedure and the patients 
remained haemodynamically stable.  

PEEP8                  -           RECRUITMENT          -             PEEP 16

ONSD R=7 mm
ONSD L=7mm
TCD:TCD: 85/34 FVm=53 
PI=0.97

ONSD R=5.2 mm
ONSD L=5.1
TCD:82/35 FVm=52
PI=0.91
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principle best describes venous outflow; this means that 
cerebral venous downstream pressure is limited by CVP 
only when CVP exceeds ICP (the edge of the waterfall). If 
PEEP and CVP are lower than ICP, they don’t influence 
effective downstream pressure. Some authors (33) found that 
if PEEP values are below ICP values, then the associated 
augmentation of intrathoracic pressure doesn’t result 
in increased ICP. Observational studies found that high 
PEEP in patients with acute stroke and subarachnoidal 
haemorrhage (SAH) was associated with a reduced CPP 
and a decrease in CBF when cerebral autoregulation was 
impaired (34,35). However, they demonstrated that the 
principal mechanism responsible for reduction in CPP was 
a decrease in MAP, PEEP dependently. In all the cases, 
when MAP was restored, CPP and CBF returned to their 
baselines (35). Marcia et al. (36) demonstrated that when 
increased PEEP was applied to brain injured patients with 
ARDS, there was a substantial difference in the effects on 
ICP, depending on whether the application of PEEP caused 
alveolar hyperinflation or alveolar recruitment. When PEEP 
determines alveolar recruitment, the main effect is reduction 
in PaCO2 with subsequently reduction in ICP. The effect is 
opposite when PEEP causes alveolar hyperinflation (36). 

In a prospective study higher levels of PEEP were 
applied on patients with severe head injury or SAH with 
normal or low respiratory system compliance (37). In the 
group with normal respiratory compliance the increase 
of PEEP caused increased CVP, but reduced MAP, CPP 
and mean velocity of middle cerebral arteries. The authors 
concluded that monitoring respiratory system compliance 
may be useful to avoid negative effect of PEEP on ICP (37).

The optimal level of PEEP is still uncertain in ARDS 
patients. An ARDSnet study published in 2004 (38) found 
no benefit from higher PEEP strategy when compared 
with the standard ARDSnet ventilation protocol (39). At 
present, therefore, the use of PEEP to treat ARDS may 
be appropriate in TBI patients, provided that MAP is 
maintained and a strict close attention needs to be paid 
to any changes in CPP and ICP. When a decision of 
increasing PEEP in a TBI patient is made, it is necessary 
to ensure MAP stability and a close monitoring of cerebral 
parameters, mainly ICP and CPP. 

RMs

RMs are useful strategies able to improve oxygenation, 
alveolar recruitment, and optimize ventilation-perfusion 
mismatch (1,20). However, RMs can have dangerous effect 

on ICP, as they can cause a significant elevation of ICP in 
patients with altered cerebral autoregulation, by impairing 
jugular blood outflow and increasing intrathoracic pressure, 
central venous pressure (CVP) and impeding cerebral 
venous return to the right atrium (Figure 3) (40). 

Nemer et al. studied the effects of RMs in a RCT 
including patients with SAH and TBI who developed  
ARDS (40) and found that pressure control recruitment 
maneuver doesn’t impair ICP or CPP, while it improves 
oxygenation (40). This suggests that RMs can be used 
with caution in patients with TBI, ensuring hemodinamic 
stability and a close monitoring of cerebral parameters. 

Prone positioning

Prone ventilation is known to improve PaO2/FiO2 ratio 
in ARDS (41). Recently published data from a large 
multicenter prospective randomised study (PROSEVA trial) 
showed a significant reduction of mortality after 28 and  
90 days in ARDS treated with prone positioning compared 
to supine positioning (23). This recent meta-analysis by 
Guérin et al. (23) suggested use of prone position in ARDS 
patients with P/F <150 mmHg. These data followed a 
study conducted by Mancebo et al., which demonstrated 
a decrease in mortality from 58% to 43% with proning of 
patients for a more prolonged period (mean 17 hours) (42). 
In TBI patients there are serious concerns over the effect 
on ICP of prone positioning and also technical difficulties 
can be present, such as risks of removal or displacements of 
ICP Bolt and drains and practical difficulties in positioning 
neuromonitoring. The recommended position for patients 
with TBI is a 30 head up tilt combined with a straight 
head position (17). Therefore, this cohort of patients has 
previously been excluded in studies with utilization of prone 
position to improve oxygenation (43,44). Thelandersson 
et al. in their pilot study (45) demonstrated that prone 
positioning is not associated with adverse effect on ICP. In 
this study, the authors enrolled 12 patients mechanically 
ventilated and with an ICP probe inserted; the patients 
were placed in prone position for 3 hours and then turned 
them back to supine position. They demonstrated that 
positioning patients with TBI and reduced intracranial 
compliance in prone position significantly improved PaO2, 
SpO2 and respiratory system compliance, without altering 
intracranial parameters (45). 

Nekludo et al. (46) discovered an improvement in 
oxygenation, a slightly increase of ICP and a moderate 
increase of MAP in TBI patients during treatment with 
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prone position. As MAP increased to a greater extent than 
ICP, this resulted in an improved CPP in prone position. 
In their cohort of patients the authors also observed that 
the ARDS cases of extrapulmonary origin seem to respond 
better to the prone position, compared with pulmonary 
ARDS (46). In a more recent study conducted by Roth 
et al. (47) a moderate but significant elevation of ICP 
during prone positioning was demonstrated. However, 
the oxygenation during and after prone positioning shows 
a significant improvement and the achieved increase of 
oxygenation and PbO2 by far exceeds and the changes in 
ICP (47). In conclusion, there is no clear evidence to aid 
intensivists when deciding whether or not proning a patient 
when there is co-existence of ARDS and TBI; however, it 
doesn’t seem unreasonable to attempt prone ventilation 
when hypoxemia is refractory to conventional ventilation. 
The effect of proning on ICP should be observed in real 
continuous time, with additional treatments for increased 
ICP or deescalation to a different ventilatory strategy if ICP 
increases too much. We would not recommend proning in 
patients with frontal contusions, where the increased local 
pressure directly related to prone position may compromise 
the perfusion in the perilesional areas.

Nitric oxide (NO)

Inhaled NO has been proposed to treat refractory 
hypoxemia by reestablishing an adequate ventilation 
perfusion matching because of its pulmonary vasodilator 
effects. In both randomized clinical trials (48,49) and 
meta analyses (50-52), NO has been shown to improve 
oxygenation over a 24 hour period of treatment, but there 
have never been any convincing data on improving outcome 
and mortality. In addition, detrimental effects on kidney 
function have been documented (53). Papadimos et al. (54) 
demonstrated anti-inflammatory effects of inhaled nitric 
oxide beyond the respiratory system and hypothesized that 
it may be of benefit when TBI and ARDS coexist. However, 
the role of nitrix oxide after cerebral injury appears to be 
complex and linked with three different isoforms of enzyme 
NO syntase: iNO, eNO and nNO (55). In the acute 
phase nitrix oxide released from infiltrating leucocytes or 
produced by induced nitric oxide synthase contributes to 
secondary injury mechanisms, for example increasing the 
production of free radicals (56). Later, nitric oxide seems 
to have protective effects by improving CBF (56). The 
available evidence suggest that NO derives from eNOS is 
neuroprotective after brain injury, whereas NO synthesized 

by iNOS contributes to further damage.
Despite the controversies surrounding NO dysfunction 

after brain injury, there is animal evidence that increasing 
cerebral NO levels either directly using inhaled NO or 
indirectly using NO donors has neuroprotective effects (57). 
Better understanding of the role of NO pathway may lead 
to the development of new pharmacotherapies.

Extracorporeal membrane CO2 removal (ECCO2R)

The use of low TV (6 mLs/kg—predicted body weight) and 
maximum End Inspiratory Plateau Pressure of 30 cmH20 
in ARDS patients (58), can determine hyperinflation and 
hypercapnia (59,60). Those results support the concept 
of ECCO2R as possible integrated tool to conventional 
ventilation to adjust respiratory acidosis (61). Although 
using an ECCO2R can provide a lower level of CO2 
reached with less injurious ventilatory strategies, evidence 
from randomized control trials is lacking. The largest case 
series included 90 patients and demonstrated improvement 
in oxygenation and reduction of PaCO2 with the use of 
Arterio-Venous (AV) ECCO2R (62). There has been a small 
case series published describing the use of AV ECCO2R 
in five patients with TBI (63): in all of them PaO2/FiO2 
ratio improved and PaCO2 decreased, and in some of them 
there was also a concomitant increase in ICP. The dose of 
anticoagulant required to run the extracorporeal circuit is 
lower than the one used for ECMO; however, there is still 
a significant risk of intracranial bleeding (63). In a pilot 
study of patients with TBI treated with ECCO2R (64), no 
complications (cerebral or extracerebral) attributable to 
anticoagulation were seen. Furthermore, this system can 
be run without additional heparin, as the components are 
heparin bonded, although the CO2 exchanger will need 
to be replaced more frequently (65). However, because 
of the small number of patients included in this analysis, 
larger prospective trials are warranted to further elucidate 
application of these devices in neurocritical care patients.

Extracorporeal membrane oxygenation (ECMO)

Veno-venous ECMO provides gas exchange across a semi 
permeable membrane and minimizes the trauma caused by 
mechanical ventilation allowing the lungs to rest (66,67). 
ECMO can be an effective strategy in patients with severe 
respiratory failure refractory to conventional ventilation 
(68,69). To avoid clotting of the circuit the patient needs 
to be anticoagulated with a bolus of heparin before  
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cannulation (70) and then with heparin infusion to maintain 
ACT 180–200 s or PTT 40–50 s. Therefore, the main 
complication of ECMO is bleeding, which occurs in 
17% to 21.3% of cases (71). Technical improvements of 
the ECMO devices, such as centifugal pump techniques 
and full heparin-coated circuits have led to a significant 
reduction of bleeding complications (72); however, 
ECMO is still considered contraindicated in patient 
with intracranial or active bleeding (73,74). There are 
several cases report published on successful craniotomy 
under ECMO treatment in multiple traumatized patients 
with severe thoracic and brain injuries, which reported 
good neurological outcomes (75,76). In the case report 
presented by Yen et al., the patient was not anticoagulated 
with systemic heparin for the running of the ECMO and a 
heparin bonded circuit was utilized (76). Robba et al. (77) 
presented a case series of four trauma patients managed 
with ECMO with no ECMO related complications. 
Mullenbach et al. (78) also recommended the use of heparin 
free ECMO in multiple injured patients with respiratory 
failure impossible to control by lung protective ventilation, 
even if severe TBI is present. Nowadays ECMO is feasible 
only in a limited number of centers, but despite the large 
number of complications associated with this treatment 
(bleeding, haemorrhage, acquired von-Willebrand disease 
during ECMO), it should be considered as rescue therapy 
for management of refractory respiratory failure even in 
trauma patients. Future larger studies should focus on the 
indications, management, and the use of heparine in this 
cohort of patients.

Steroids

The development and severity of ARDS are related to 
dysregulated inflammation and the outcomes are related to 
persistent inflammation and abnormal fibroproliferation 
(79,80). Corticosteroids are potent modulators of 
inflammation and inhibitors of fibrosis that have been 
used since the description of ARDS in attempts to 
improve outcome (81). Certainly there is no evidence 
to suggest that a short course of high dose steroids is 
helpful for either prevention, as demonstrated by four 
randomized controlled trials (82-85) or treatment of 
ARDS (86). Clinical trials regarding the use of steroids in 
the late stage of ARDS gave controversial results (87-89);  
therefore, work still needs to be done to determine if 
there are benefits to prolonged treatment with low dose 
corticosteroids for unresolving ARDS. However, ARDS 

is heterogeneous; steroids may be beneficial for some 
etiologies of ARDS, and not for others. ARDS associated 
with Pneumocystis carinii, for example, should be treated 
with steroids, since high quality randomized controlled trials 
have demonstrated that steroid treatment decreases both 
the risk of respiratory failure and death (90). Unfortunately, 
this level of evidence is lacking for most other etiologies of 
ARDS. Despite significant interest in the use of steroids in 
treatment of pandemic H1N1 influenza-associated ARDS, 
most reports from careful observation cohort studies suggest 
that such treatment was associated with harm (91,92). 
For TBI patients there has been a similar long interest 
in the use of steroids to modulate the disease process. 
However, now the use of steroids is not recommended 
for improving outcome or reducing ICP and in patients 
with severe TBI high dose methylprednisolone was 
associated with increased mortality and is contraindicated. 
(Level 1 Recommendation, Guidelines for the Management 
of Severe TBI, 4th edition) (17). The Corticosteroid 
Randomization after Significant Head Injury Trial  
(CRASH) (93) was designed to provide high quality of 
evidence on the impact of steroids on TBI patients. This 
was a large multicenter trialwhich studied over 10,000 
patients with TBI. Participants were randomized to receive 
either 2 g intravenous methylprednisolone followed by  
0.4 mg/h for 48 h, or placebo. Data from CRASH study 
showed a deleterious effect of methylprednisolone, higher 
mortality and more corticosteroid-treated subjects in the 
unfavorable outcomes group (death and severe disability) 
compared with the favorable group (94). 

Fluid balance and hemoglobin target

An association between positive fluid balance and worse 
outcome in patients with ARDS has been demonstrated in 
a number of studies (95,96). Data from the ARDS Network 
Fluids and Catheter Treatment Trial (97) support the use 
of a conservative fluid management strategy in ARDS, 
having demonstrated improvement of the oxygenation 
index and the lung injury score, reduction of ventilator-
free days and length of stay in ICU. However, in some 
patients, particularly those with severe ARDS requiring high 
mean airway pressures for oxygenation, hypovolaemia may 
exacerbate hypoxaemia by virtue of increased intrapulmonary 
shunt, and clinical benefit may result from the careful 
administration of fluid boluses (98). Zhao et al. (99)  
were the first to test the effect of fluid balance on short 
term TBI outcome and they demonstrated that both high 
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and low fluid balances were associated with poor short-
term outcome and unstable ICP in TBI patients. Patients at 
the low (<637 mL fluid balance calculated at midnight) and 
upper (>3,673 mL calculated at midnight) tertiles of fluid 
balance were associated with poor outcomes. Those in the 
upper tertile also had a higher incidence of acute kidney 
injury and refractory intracranial hypertension. There was 
a negative correlation between the cumulative fluid balance 
and the short-term outcome for patients in the low tertile 
and a positive correlation between the cumulative fluid 
balance and the short-term outcome in the upper fluid 
balance group (99). High fluid balance is independently 
associated with poor short-term outcomes including acute 
kidney injury and refractory intracranial hypertension 
in patients with TBI. An insufficient fluid in the early 
stage of critical illness may lead to tissue hypoperfusion 
and ischemia (100) whereas excessive intravenous fluid 
contributes to the development of tissue edema. An 
optimal volume of fluid at any given time maintains tissue 
viability (101). These data suggest the critical importance of 
maintaining an appropriate fluid balance for TBI patients. 
Excessive fluid balance may exacerbate secondary brain 
injures such as edema, intracranial hypertension and the 
disruption of the blood-brain barrier, leading to worse 
outcome. However, fluid therapy is necessary for volume 
resuscitation, maintenance of CPP and the prevention of 
secondary brain injury (102). Anemia is highly prevalent in 
the intensive care unit (ICU) with up to 95% critically ill 
patients developing subnormal haemoglobin (Hb) level by 
day 3 (103). Likewise, 20% to 53% of patients receive red 
blood cell (RBC) transfusions to correct anemia during their 
ICU stay (104). However, allogenic RBC transfusions carry 
risks that may adversely affect clinical outcomes (105,106). 
Evidence suggests that it is safe to adopt a lower transfusion 
threshold for the general medical/surgical ICU population 
(107-109). This has led to a paradigm shift concerning 
RBC transfusions in the ICU, with most guidelines now 
recommending hemoglobin levels around 70 g/L for 
transfusion in patients without significant comorbidities to 
minimize exposure to allogenic blood (110-112). However, 
specific patient populations, such as neurocritically ill 
patients, were underrepresented in these studies and 
results could thus not be applied to them. Neurocritically 
ill patients may represent an exception to the rationale for 
using low transfusion triggers because impaired oxygen 
delivery is a crucial modifiable factor in brain ischemia 

and secondary brain injury (113,114). The optimal Hb 
level for cerebral oxygen delivery in TBI patients is still 
unknown (115). Two guidelines in neurocritically ill patient 
population (subarachnoid hemorrhage) were recently 
published; one recommending to treat anemia but without 
mention to threshold, and the other one recommending 
transfusion in order to reach hemoglobin levels of 80 
to 100 g/L (116,117). Interestingly, guidelines for the 
management of patients with TBI did not cover this  
topic (18). Moreover, data on which clinicians have to 
rely in decision making is discordant, as both anemia and 
RBC transfusion have been observed to be associated with 
unfavorable clinical outcomes in neurocritically ill patients 
(118,119). Anemia has repeatedly shown to be associated 
with unfavorable outcomes in patients with TBI (118-120), 
although other studies have not confirmed this relationship 
(121,122). Recent microdialysis studies showed that cerebral 
metabolism of subjects affected by SAH and TBI becomes 
impaired at Hb values lower than 90 g/L (123), but RBC 
transfusions are known to improve physiologic measures 
such as brain oxygen tension in a majority of patients with 
TBI (124-126). 

Conclusions

The lung and brain interaction poses important challenges 
to ventilator management of patients with TBI and ARDS. 
The beneficial effect of protective lung ventilation and 
respiratory strategies is well established both in intensive 
care and in the operating room. However, the application of 
these techniques on neurocritical care patients is contrasting 
because of the specific needs and ventilator targets in this 
group of patients. Moreover, haemodynamic and general 
management (including Hb target and fluid balance) can be 
contrasting in this group of patients. The use of cerebral 
multimodal monitoring can be useful to assess cerebral 
hemodynamic and to evaluate the effects of ventilator 
strategies commonly used in ARDS patients. It would be 
desiderable a concomitant cerebral and respiratory system 
monitoring in these patients, mainly in the more severe 
ones, in order to allow the best approach to these patients 
and avoid complications.

Further studies will be necessary to create shared 
diagnostic and therapeutic guidelines based on available 
evidence and that can contribute to improve patients’ 
clinical outcome. 
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