664 research outputs found

    A few-electron quadruple quantum dot in a closed loop

    Full text link
    We report the realization of a quadruple quantum dot device in a square-like configuration where a single electron can be transferred on a closed path free of other electrons. By studying the stability diagrams of this system, we demonstrate that we are able to reach the few-electron regime and to control the electronic population of each quantum dot with gate voltages. This allows us to control the transfer of a single electron on a closed path inside the quadruple dot system. This work opens the route towards electron spin manipulation using spin-orbit interaction by moving an electron on complex paths free of electron

    Magnetic dephasing in mesoscopic spin glasses

    Get PDF
    We have measured Universal Conductance Fluctuations in the metallic spin glass Ag:Mn as a function of temperature and magnetic field. From this measurement, we can access the phase coherence time of the electrons in the spin glass. We show that this phase coherence time increases with both the inverse of the temperature and the magnetic field. From this we deduce that decoherence mechanisms are still active even deep in the spin glass phase

    Advances in characterization of the soil clay mineralogy using X-ray diffraction: from decomposition to profile fitting

    Get PDF
    International audienceStructural characterization of soil clay minerals often remains limited despite their key influence on soil properties. In soils, complex clay parageneses result from the coexistence of clay species with contrasting particle sizes and crystal-chemistry and from the profusion of mixed layers with variable compositions. The present study aimed at characterizing the mineralogy and crystal chemistry of the < 2 μm fraction along a profile typical of soils from Western Europe and North America (Neo Luvisol). X-ray diffraction (XRD) patterns were nterpreted using i) the combination of XRD pattern decomposition and indirect identification from peak positions commonly applied in soil science and ii) the multi-specimen method. This latter approach implies direct XRD profile fitting and has recently led to significant improvements in the structural characterization of clay minerals in diagenetic and hydrothermal environments. In contrast to the usual approach, the multi-specimen method allowed the complete structural characterization of complex clay parageneses encountered in soils together with the quantitative analysis of their mineralogy. Throughout the profile, the clay paragenesis of the studied Neo Luvisol systematically includes discrete smectite, illite and kaolinite in addition to randomly interstratified illite-smectite and chlorite-smectite. Structural characteristics of the different clay minerals, including the composition of mixed layers, did not vary significantly with depth and are thus indicative of the parent material. The relative proportion of the < 2 μm fraction increased with increasing depth simultaneously with smectite relative proportion. These results are consistent with the leaching process described for Luvisols in the literature

    Robust Neural Networks using Randomized Adversarial Training

    Get PDF
    Since the discovery of adversarial examples in machine learning, researchers have designed several techniques to train neural networks that are robust against different types of attacks (most notably ∞ and 2 based attacks). However , it has been observed that the defense mechanisms designed to protect against one type of attack often offer poor performance against the other. In this paper, we introduce Randomized Adversarial Training (RAT), a technique that is efficient both against 2 and ∞ attacks. To obtain this result, we build upon adversarial training, a technique that is efficient against ∞ attacks, and demonstrate that adding random noise at training and inference time further improves performance against 2 attacks. We then show that RAT is as efficient as adversarial training against ∞ attacks while being robust against strong 2 attacks. Our final comparative experiments demonstrate that RAT outperforms all state-of-the-art approaches against 2 and ∞ attacks
    corecore