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Abstract

This paper tackles the problem of defending
a neural network against adversarial attacks
crafted with different norms (in particular ¢,
and /5 bounded adversarial examples). It has
been observed that defense mechanisms de-
signed to protect against one type of attacks
often offer poor performance against the other.
We show that /., defense mechanisms cannot
offer good protection against /5 attacks and
vice-versa, and we provide both theoretical and
empirical insights on this phenomenon. Then,
we discuss various ways of combining existing
defense mechanisms in order to train neural net-
works robust against both types of attacks. Our
experiments show that these new defense mech-
anisms offer better protection when attacked
with both norms.

1 Introduction

Deep neural networks achieve state of the art perfor-
mances in a variety of domains such as natural language
processing (Radford et al., 2018), image recognition (He
et al., 2016) and speech recognition (Hinton et al., 2012).
However, it has been shown that such neural networks
are vulnerable to adversarial examples, i.e. impercepti-
ble variations of natural examples, crafted to deliberately
mislead the models (Globerson and Roweis, 2006; Biggio
et al., 2013; Szegedy et al., 2014). Since their discovery,
a variety of algorithms have been developed to generate
adversarial examples (a.k.a. attacks), for example FGSM
(Goodfellow et al., 2015), PGD (Madry et al., 2018) and
C&W (Carlini and Wagner, 2017), to mention the most
popular ones.

Because it is difficult to characterize the space of visu-
ally imperceptible variations of a natural image, existing
adversarial attacks use surrogates that can differ from one
attack to another. For example, Goodfellow et al. (2015)
use the £, norm to measure the distance between the orig-
inal image and the adversarial image whereas Carlini and
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Wagner (2017) use the 5 norm. When the input dimen-
sion is low, the choice of the norm is of little importance
because the /., and ¢, balls overlap by a large margin,
and the adversarial examples lie in the same space. An im-
portant insight in this paper is to observe that the overlap
between the two balls diminishes exponentially quickly
as the dimensionality of the input increases. For typical
image datasets with large dimensionality, the two balls are
mostly disjoint. As a consequence, the ¢,-bounded and
the /5-bounded adversarial examples lie in different area
of the space, and it explains why /., defense mechanisms
perform poorly against ¢ attacks and vice-versa.

We show that this insight is crucial to design defense
mechanisms that are robust against both types of attacks,
and we advocate for the design of models that incorporate
defense mechanisms against both /., and /5 attacks. Then
we evaluate strategies (existing and new ones) to mix up
existing defense mechanisms. In particular, we evaluate
the following strategies:

(a) Mixed Adversarial Training (MAT), a training proce-
dure inspired by Adversarial Training (Goodfellow
et al., 2015). It is based on augmenting training
batches using both ¢, and {5 adversarial examples.
This method defends well against both norms for
PGD attacks, but fails against C&W attacks.

(b) Mixed noise injection (MNI), a technique that con-
sists in noise injection at test time (Cohen et al.,
2019; Pinot et al., 2019). We evaluate different
noises and their mixture. This method defends bet-
ter against C&W attacks, but does not obtain good
results against PGD attacks for /., norm.

(¢c) Randomized Adversarial Training (RAT), a solution
to benefit from the advantages of both ¢, adver-
sarial training, and {5 randomized defense. As we
will show, RAT offers the best trade-off between
defending against PGD and C&W attacks.

The rest of this paper is organized as follows. In Sec-
tion 2, we recall the principle of existing attacks and
defense mechanisms. In Section 3, we conduct a theoret-
ical analysis to show why the /., defense mechanisms
cannot be robust against /5 attacks and vice-versa. We
then corroborate this analysis with empirical results us-
ing real adversarial attacks and defense mechanisms. In



Section 4, we discuss various strategies to mix defense
mechanisms, conduct comparative experiments, and dis-
cuss the performance of each strategy.

2 Preliminaries on Adversarial Attacks
and Defense Mechanisms

Let us first consider a standard classification task with
an input space X = [0, 1]¢ of dimension d, an output
space ) = [K] and a data distribution D over X' x ). We
assume the model fy has been trained to minimize a loss
function L as follows:

mein]E(w)y)ND [L(fo(x),y)]- M

In this paper, we consider N-layers neural network mod-
els, therefore the model is a composition of N non-linear

parametric functions ¢g, (i.e. fo = qﬁé];j) 0-++0 qﬁéi)).

2.1 Adversarial attacks

Given an input-output pair (z,y) ~ D, an adversar-
ial attack is a procedure that produces a small pertur-
bation 7 € X such that fy(x + 7) # y. To discover
the damaging perturbation 7 of z, existing attacks can
adopt one of the two following strategies: (i) maximiz-
ing the loss L(fg(x + 7),y) under some constraint on
[7l,, withp € {0,--- , 00} (ak.a. loss maximization);
or (ii) minimizing ||7|,, under some constraint on the loss
L(fo(x + 7),y) (a.k.a. perturbation minimization).

(i) Loss maximization. In this scenario, the proce-
dure maximizes the loss objective function, under the
constraint that the £, norm of the perturbation remains
bounded by some value ¢, as follows:

argmax L(fo(z 4+ 7),y). 2
1, <e

The typical value of € depends on the value p of the
norm ||-[|,, considered in the problem setting. In order to
compare /., and /5 attacks of similar strength, we choose
values of €., and e, (for £, and ¢ norms respectively)
which result in /., and /5 balls of equivalent volumes.
For the particular case of CIFAR-10, this would lead us
to choose €., = 0.03 and e2 = 0.8 which correspond to
the maximum values chosen empirically to avoid the gen-
eration of visually detectable perturbations. The current
state-of-the-art method to solve Problem (2) is based on a
projected gradient descent (PGD) (Madry et al., 2018) of

radius e. Given a budget e, it recursively computes

it = H (sct—i—a argmax (At|5)> 3)

B, (z0) 5211611, <1

where By(z,e) = {z + 7st]7], < e}, A" =
VoL (fo (2'),y), a is a gradient step size, and [] 4 is
the projection operator on S. Both PGD attacks with
p = 2, and p = oo are currently used in the literature as
state-of-the-art attacks for the loss maximization problem.

(ii) Perturbation minimization. This type of proce-
dures search for the perturbation that has the minimal £,

norm, under the constraint that £(fp(x + 7), ) is bigger
than a given bound c:

argmin

L(fo(z47),y)>c
The value of c is typically chosen depending on the loss
function L. For example, if £ is the 0/1 loss, any ¢ > 0 is
acceptable. Problem (4) has been tackled by Carlini and
Wagner (2017), leading to the strongest method known
so far. (Denoted C&W attack in the rest of the paper.) It
aims at solving the following Lagrangian relaxation of
Problem (4):

Il €y

argmin [|7||, + A x g(z + 7) ®)

where g(z + 7) < 0 if and only if L(fo(z + 7),y) > c.
The authors use a change of variable 7 = tanh(w) — z
to ensure that —1 < x 4+ 7 < 1, a binary search to
optimize the constant ¢, and Adam or SGD to compute an
approximated solution. The C&W attack is well defined
both for p = 2, and p = oo, but there is a clear empirical
gap of efficiency in favor of the /5 attack. Accordingly,
for this work, we only consider C&W as an /5 attack
solving a norm minimization problem.

2.2 Defense mechanisms

Adversarial Training. Adversarial Training (AT) was
introduced by Goodfellow et al. (2015) and later improved
by Madry et al. (2018) as a first defense mechanism to
train robust neural networks. It consists in augmenting
training batches with adversarial examples generated dur-
ing the training procedure. At each training step, the
standard training procedure from Equation 1 is replaced
with a min max objective function to minimize the ex-
pected value of maximum (perturbed) loss, as follows:

mi

en(w’gl;:ND max L (fo(x+7),y)| . (6)

I, <e

In the case where p = oo, this technique offers good
robustness against £, attacks (Athalye ef al., 2018). AT
can also be performed using other kinds of attacks (in-
cluding strong ¢ attacks such as C&W albeit at a much
higher computational cost). However, as we will discuss
in Section 3, /. adversarial training offers poor protec-
tion against /o adversarial attacks and vice-versa.

Noise injection mechanisms. Another important tech-
nique to design robust models against adversarial attacks
is to inject noise in the model. Injecting a noise vector n
at inference time results in a randomized neural network
fo = fo(x +n).

In contrast with Adversarial Training, noise injec-
tion mechanisms are, in certain cases, provably robust
against adversarial examples as discussed by Pinot et al.
(2019); Cohen et al. (2019). Empirical results have also
demonstrated their efficiency against ¢, adversarial at-
tacks (Rakin et al., 2018). These works focus however
on Gaussian and Laplace distributions a.k.a generalized
Gaussian of order 2, and 1 respectively. As the limit of a



generalized Gaussian density (Dytso ef al., 2018) when
p — oo is a Uniform distribution, we also investigate the
injection of uniform noise to defend against ¢, attacks.

3 No Free Lunch for adversarial defenses

3.1 Theoretical analysis

Let us consider a classifier f._ equipped with an ideal
defense mechanism against adversarial examples bounded
with an ¢, norm of value €. It guarantees that for any
input-output pair (z,y) ~ D and for any perturbation 7
such that || 7| < ex, fe. is not misled by the perturba-
tion (i.e. fe_ (z+7) = fe (x)). We now focus our study
on the performance of this classifier against adversarial
examples bounded with an /5 norm of value €.

Using Figure 1(a), we observe that any /5 adversarial
example that is also in the ¢, ball, is guaranteed to be
protected by the ¢, defense mechanism of f.__, but not
if it is outside the /., ball. To characterize the probability
that an {5 perturbation is guaranteed to be protected by
an /., defense mechanism in the general case (i.e. any
dimension d), we measure the ratio between the volume
of intersection of the /., ball of radius €., and the ¢5 ball
of radius €5. As Theorem 1 shows, this ratio depends on
the dimensionality d of the input vector x, and rapidly
converges to zero when d increases. Therefore a defense
mechanism that protects against all /., bounded adversar-
ial examples, is unlikely to be efficient against /5 attacks.

Theorem 1 (Probability of the intersection goes to 0). Let
Bj 4, and By 4 be two d dimensional balls, respectively
for ls norm and {, norm. If for all d, one constrains
B3 4, and B g to have the same volume, then

VOI(BQ,d ﬂ Bw7d)
VOI(Booyd)

Proof. Without loss of generality, let us fix the radius of
the /o, ball to 1 (denoted Bo, 4(1)). One can show that
for all d, Vol (Bg 4 (r2(d))) = Vol (Boo,q (1)). Where
ro(d) = %I‘(% +1)%/4, T is the gamma function, and
By q (r2(d)) is the ¢ ball of radius r2(d). Then, thanks
\/ =d*/?. Finally, if we
denote Ug, the uniform distribution on set .S, by using
Hoeffding inequality between Eq. (9) and (10), we get:

— 0 when d — oo.

to Stirling’s formula, r3(d) ~

Vol(Bg,q(r2(d)) () Beo,a(1))

Vol( B a(1)) @
=Pontts_ o) [z € By,a(ra2(d))] ®)
“Prtts_ o [Si [ < 73] ©)

Sexp{—d_1 (r3(d) —d]E\$1|2)2} (10)

2
<exp{— (i—;) d+0(d)}. (11)

Then the ratio between the volume of intersection of the
ball and the volume of the ball converges towards 0. [J

Theorem 1 states that, when d is large enough, ¢
bounded perturbations have a null probability of being
also in the ¢, ball of the same volume. As a consequence,
for any value of d that is large enough, a defense mech-
anism that offers full protection against /., adversarial
examples is not guaranteed to offer any protection against
05 attacks, and vice-versa!.

Remark that this result defeats the 2-dimensional in-
tuition: if we consider a 2 dimensional problem setting,
the ¢, and the /5 balls have an important overlap (as
illustrated in Figure 1(a)) and the probability of sampling
in the intersection of the two balls is bounded by approxi-
mately 98%. However, as we increase the dimensionality
d, this probability quickly becomes negligible, even for
very simple image datasets such as MNIST. An instantia-
tion of the bound for classical image datasets is presented
in Table 1. The probability of sampling in the intersection
of the /., and /5 balls is close to zero for any realistic
image setting. In large dimensions, the volume of the
corner of the ¢, ball is much bigger than it appears in
Figure 1(a).

Dataset | d | Inter. (inlog,,)
- 2 -0.009
MNIST 784 -144
CIFAR 3072 -578
ImageNet | 150528 -28946

Table 1: Bounds of Theorem 1 on the volume of intersection of
{5 and ¢ balls at equal volume for typical image classification
datasets. When d = 2, the bound is 107%-%%° ~ 0.98.

3.2 No Free Lunch in practice

Our theoretical analysis shows that if adversarial exam-
ples were uniformly distributed in a high dimensional
space, then any mechanism that perfectly defends against
{~, adversarial examples has a null probability of protect-
ing against ¢5-bounded adversarial attacks and vice-versa.
Although existing defense mechanisms do not necessarily
assume such a distribution of adversarial examples, we
demonstrate that whatever distribution they use, it offers
no favorable bias w.r.t the result in Theorem 1. As we
discuss in Sec. 2, there are two distinctive attack settings:
loss maximization (PGD) and perturbation minimization
(C&W). We analyse the first setting in details and conduct
a second series of experiments to demonstrate that the
results are similar if we consider the second setting.

Adversarial training vs. loss maximization attacks
To demonstrate that /., adversarial training is not robust
against PGD-/5 attacks, we measure the number of /5
adversarial examples generated with PGD-/5, lying out-
side the /., ball. (Note that we consider all examples, not
just the ones that successfully fool the classifier). To do
so, we use the same experimental setting as in Section 4
with €5, and €5 such that the volumes of the two balls are

ITh. 1 can easily be extended to any two balls with different
norms. For clarity, we restrict to the case of £, and /2 norms.
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Figure 1: Left: 2D representation of the £ and {2 balls of respective radius € and ¢'. Middle: a classifier trained with £
adversarial perturbations (materialized by the red line) remains vulnerable to /5 attacks. Right: a classifier trained with ¢2 adversarial
perturbations (materialized by the blue line) remains vulnerable to ¢~ adversarial examples.

equal. Additionally, we also measure the average /., and
¢5 norms of these adversarial examples, to understand
more precisely the impact of adversarial training, and we
report the accuracy, which reflects the number of adver-
sarial examples that successfully fooled the classifier (cf.
Table 2 (top)). The same experiment is conducted for ¢
adversarial training against PGD-/, and the results are
presented in Table 2 (bottom). All experiments in this
section are conducted on CIFAR-10, and the experimental
setting is fully detailed in Section 4.4.

PGD-/5 vs. — Unprotected AT-{
Examples inside /> ball 100% 100%
Average ¢ norm 0.83 0.83
Examples inside /, ball 0% 0%
Average (o, norm 0.075 0.2
Accuracy under attack 0.00 0.37
PGD-/ vs. — Unprotected  AT-(»
Examples inside /2 ball 100% 100%
Average {2 norm 1.4 1.64
Examples inside ¢, ball 0% 0%
Average (., norm 0.031 0.031
Accuracy under attack 0.00 0.37

Table 2: (Top) number of PGD-/¢> adversarial examples inside
the ¢~ and inside the ¢ ball, without and with ¢, adversarial
training. (Bottom) number of PGD-{., adversarial examples
inside the ¢+, and inside the ¢2 ball, without and with ¢ adver-
sarial training. On CIFAR-10 (d = 3072).

The results are unambiguous: none of the adversarial
examples generated with PGD-/5 are inside the ¢, ball
(and thus in the intersection of the two balls). As a conse-
quence, we cannot expect adversarial training ¢, to offer
any guaranteed protection against /o adversarial exam-
ples. We illustrate this phenomenon using Figure 1 (b):
notice that the /5 adversarial example represented in this
figure cannot be protected using /., adversarial training
which is only designed to push the decision boundary (red
line) outside of the /., ball (square), but not outside of
the /5 ball (circle). Our results demonstrate that all PGD-

{5 examples are already in this upper area (outside the
intersection), before /., adversarial training. Therefore
{ adversarial training is unnecessary.

The second experiment naturally demonstrates a similar
behaviour. We first observe that adversarial examples
generated with PGD-/, lying outside the /5 ball cannot
be eliminated using /> adversarial training (as illustrated
in Figure 1 (c)). However, Table 2 shows that all examples
are already outside the ¢5 ball, clustered around the corner
of the ¢, ball (average distance is 1.64 compared to
0.031 x /3072 = 1.71 for the corner). Therefore, any
defense method (including /5 adversarial training) that
would eliminate only adversarial examples inside the /o
balls, cannot be efficient against ¢, adversarial examples.

The comparison of accuracy under PGD-/5 attack of a
classifier defended by either /-, or {5 adversarial training
corroborate our analysis. In fact, when defended with
AT-{,, the accuracy of the classifier under attack is 0.37,
while the AT-¢5 defends the classifier up to 0.52 i.e. 40%
better. Similarly, a classifier defended with AT-¢., with
an accuracy under PGD-{, attack of 0.43 performs 16%
better than the one defended with AT-¢5 which obtains
0.37 accuracy under attack. These results keep confirming
our claim: /5-based defenses are inadequate to defend
against /., attacks, and vice-versa.

| Unprotected | AT-(
Examples inside intersection 70% 29%
Examples outside intersection 30% 71%
Accuracy under attack \ 0.00 | 0.00

Table 3: This table shows the amount of adversarial examples
inside the ¢, ball and inside the /2 ball but outside the ¢
ball. We can observe a clear shift between a baseline model (no
defense) and a model trained with Adversarial Training PGD
{~ attacked with C&W attack (Carlini and Wagner, 2017).

Adversarial training vs. perturbation minimization
attacks. We now study the performances of an ¢ per-
turbation maximization attack (C&W) with and without
AT-{.. It allows us to understand in which area C&W
discovers adversarial examples and the impact of AT-/.
The results are reported in Table 3. First, when the clas-
sifier is undefended, we observe that 70% of adversarial



examples lie inside the intersection of the two balls. This
phenomenon is due to the fact that C&W minimizes the
{5 norm of the perturbation. Therefore without AT, the
attack is able to discover adversarial examples that are
very close to the original image, where the ¢, and the
{5 balls overlap. When the model is trained with AT-¢,
we observe a clear shift: 71% of the examples are now
outside the /., but still inside the /5 ball, as illustrated
in Figure 1 (b). This means that C&W attack still mini-
mizes the /5 norm of the perturbation while updating its
search space to ignore the examples in the /., ball. Since
C&W was always able to discover adversarial examples
in this area, AT-/., offers no extra benefit in terms of
robustness (0% Accuracy). Together, these results and
Theorem 1 confirm that /. -based defenses are vulnerable
to {o-based perturbation minimization attacks.

4 Building Defenses against Multiple
Adversarial Attacks

So far, we have shown that adversarial defenses are able
to protect only against the norm they have been trained
on. In order to solve this problem, we propose several
strategies to build defenses against multiple adversarial
attacks. These strategies are based on the idea that both
types of defense must be used simultaneously in order for
the classifier to be protected against multiple attacks. In
this section we evaluate several of these defense strategies,
and compare them against state-of-the-art attacks using a
solid experimental setting (the detailed description of the
experimental setting is described in Section 4.4).

4.1 MAT - Mixed Adversarial Training

Earlier results have shown that AT-/, improves the ro-
bustness against corresponding /,,-bounded adversarial
examples, and the experiments we present in this sec-
tion corroborate this observation (See Table 4, column:
AT). Building on this observation, it is natural to exam-
ine the efficiency of Mixed Adversarial Training (MAT)
against mixed /., and /5 attacks. MAT is a variation of
AT that uses both /,-bounded adversarial examples and
£5-bounded adversarial examples as training examples.

As discussed by Tramer and Boneh (2019), there are
several possible strategies to mix the adversarial train-
ing examples. The first strategy (MAT-Rand) consists in
randomly selecting one adversarial example among the
two most damaging /. and ¢, and to use it as a training
example, as described in Equation 12:

MAT-Rand:
min [E E max L z+7), )
0 (z,y)~D Ln~u({2,oo}) [|T|p<6 (fo( ) y)H

12)
An alternative strategy is to systematically train the
model with the most damaging adversarial example (£,
or ¢5). As described in Equation 13:
MAT-Max:

0 (z,y)~D [pe{2,00} |7]l,<e

max E(fe(ﬂf+7)7y)] - (13)

min [E l max

The accuracy of MAT-Rand and MAT-Max are reported
in Table 4 (Column: MAT). As expected, we observe that
MAT-Rand and MAT-Max offer better robustness both
against PGD-¢; and PGD-/{, adversarial examples than
the original AT does. More generally, we can see that
AT is a good strategy against loss maximization attacks,
and thus it is not surprising that MAT is a good strategy
against mixed loss maximization attacks. However, AT
is very weak against perturbations minimization attacks
such as C&W, and MAT is no better against such attacks.
This weakness makes MAT of little practical use.

4.2 MNI - Multiple Noise Injection

Another important technique to defend against adversarial
examples is to use Noise Injection (NI). Pinot ez al. (2019)
demonstrated that injecting noise in the network can give
provable defense against adversarial examples. Further-
more, we found that NI offers better protection than AT
against perturbation minimization attacks such as C&W,
thus, they are good candidates to obtain models robust
to multiple attacks. In this work, besides the generalized
Gaussian noises, already investigated in previous works,
we evaluate the efficiency of uniform distributions which
are generalized Gaussian of order co. As shown in Ta-
ble 4 (Columns: NI), noise injection from this distribution
gives better results than Gaussian noise injection against
all the attacks except PGD-{ ..

To obtain the best out of both noises, we propose to
combine them (MNI) either by convolution (Conv) or by
mixture (Mix). Hence, the final noise vector comes from
one of the following probability density functions:
MNI-Conv:

1 —x? 1{|z| < o9}
= 14
\2mo? exp{ 202 } * 209 a4
MNI-Mix:
1 —x? 1{|z| < o9}
= . 15
\/8mo? exp{ 20% } + 409 (as)

Following the literature (Pinot ef al., 2019), we choose
o1 = 0.25. Accordingly, we take oo = 0.2. The results
are presented in Table 4 (Column: MNI). We found that
MNI offers comparable results against the experimental
setting in (Pinot et al., 2019), but does not improve over
NI with a uniform distribution.

4.3 RAT - Randomized Adversarial Training

We now examine the performance of Randomized Adver-
sarial Training (RAT) which mixes Adversarial Training
with Noise Injection. We consider the two symmetric
settings: RAT-/, and a noise from a normal distribution,
as well as RAT-/5 and a noise from a uniform distribution.
The corresponding loss function is defined as follows:

min  E [maxﬁ(fg(x—kﬂ,y))} (16)

0 (zy)~D |l7l<e

where fp is a randomized neural network with noise in-
jection as described in Section 2.2.



|| Baseline || AT | MAT || NI | MNI || RAT-L. | RAT-L

[l - [| €oc | €2 | Max | Rand || N | U | Mix | Conv || N | U | N | U
Natural examples 0.94 0.85 0.85 0.80 0.80 0.79 0.87 0.84 0.79 0.74 0.80 0.79 0.87
PGD-/ 20 0.00 0.43 0.37 0.37 0.40 0.23 0.22 0.19 0.20 0.35 0.40 0.23 0.22
PGD-/5 20 0.00 0.37 0.52 0.50 0.55 0.34 0.36 0.33 0.32 0.43 0.39 0.34 0.37
C&W-£5 60 0.00 0.00 0.00 0.00 0.00 0.33 0.53 0.41 0.32 0.30 0.41 0.33 0.34
Min Accuracy || 000 || 0.00 | 0.00 | 0.00 | 000 || 023 | 022 | 0.19 | 020 || 0.30 | 039 | 023 | 0.22

Table 4: This table shows a comprehensive list of results consisting of the accuracy of several defense mechanisms against /2 and £
attacks. This table main objective is to compare the overall performance of ‘single‘ norm defense mechanisms (AT and NI presented
in the Sec. 2.2) against mixed norms defense mechanisms (MNI, MAT & RAT mixed defenses presented in Sec. 4). The red values
present all accuracy below 30% which shows that all defense mechanisms have ‘weaknesses‘ with the exception of RAT.

The results of RAT are reported in Table 4 (Columns:
RAT-/., and RAT-/5). We can observe that the first set-
ting offers the best extra robustness, which is consistent
with previous experiments, since AT is generally more
effective against ¢, attacks whereas NI is more effective
against £o-attacks. Overall, RAT-/, and a noise from uni-
form distribution offer the best minimal robustness with
at least 0.39 accuracy, 16 points above the second best
(NI with noise from a normal distribution, with 0.22).

4.4 Experimental setting

To compare the robustness provided by the different de-
fense mechanisms, we use strong adversarial attacks and
a conservative setting: the attacker has a total knowledge
of the parameters of the model (white-box setting) and we
only consider untargeted attacks (a misclassification from
one target to any other will be considered as adversarial).
To evaluate defenses based on noise injection, we use
Expectation Over Transformation (EOT), the rigorous ex-
perimental protocol proposed by Athalye et al. (2017) and
later used by Athalye et al. (2018); Carlini et al. (2019)
to identify flawed defense mechanisms.

To attack the models, we use state-of-the-art algorithms
PGD and C&W (see Section 2). We run PGD with 20
iterations to generate adversarial examples and with 10
iterations when it is used for adversarial training. We run
C&W with 60 iterations to generate adversarial examples.
For bounded attacks, the maximum /., bound is fixed to
0.031 and the maximum /5 bound is fixed to 0.83. As
discussed in Section 2, we chose these values so that the
!~ and the /5 balls have similar volumes. Note that 0.83
is slightly above the values typically used in previous
publications in the area, meaning the attacks are stronger,
and thus more difficult to defend against.

All experiments are conducted on CIFAR-10 with the
Wide-Resnet 28-10 architecture. We use the training pro-
cedure and the hyper-parameters described in the original
paper by Zagoruyko and Komodakis (2016). Training
time varies from 1 day (AT) to 2 days (MAT) on 4 GPUs-
V100 servers.

5 Related Work

Adversarial attacks have been an active topic in the ma-
chine learning community since their discovery (Glober-
son and Roweis, 2006; Biggio et al., 2013; Szegedy et

al., 2014). Many attacks have been developed. Most
of them solve a loss maximization problem with either
{0 (Goodfellow et al., 2015; Kurakin et al., 2016; Madry
etal., 2018), {5 (Carlini and Wagner, 2017; Kurakin et al.,
2016; Madry et al., 2018), ¢1 (Tramer and Boneh, 2019)
or {o (Papernot et al., 2016) surrogate norms.

Defending against adversarial examples is a challeng-
ing problem since the number of layers makes it diffi-
cult to understand the geometry of the decision boundary.
Despite empirically proven efficient, Adversarial train-
ing (Goodfellow et al., 2015) gives no formal defense
guarantees. Besides this line of work, randomization and
smoothing (Xie et al., 2018; Lecuyer et al., 2018; Pinot
et al., 2019; Cohen et al., 2019) have gained popularity
since they provide guarantees, but so far, the efficiency of
these methods remains limited against ¢,-based attacks.

An open question so far is to build an efficient defense
against multiple norms. Concurrently to our work, Tramer
and Boneh (2019) proposed to tackle this issue by mix-
ing randomized training with attacks for different norms
to defend against multiple perturbations. Then, Salman
et al. (2019) proposed to mix adversarial training with
randomized smoothing to have better certificates against
adversarial attacks. These methods are closely related
respectively to MAT and RAT. Aside from these simi-
larities, we propose a new geometric point of view for
robustness against multiple perturbations, that is backed
up theoretically and experimentally. We also conduct a
rigorous and full comparison of RAT and MAT as de-
fenses against adversarial attacks. Finally, we propose
MNI, that adds mixture of noise to our network and gets
promising results. To the best of our knowledge, this is
the first work that covers mixtures and convolution of
noises with different natures.

6 Conclusion

In this paper, we tackle the problem of protecting neural
networks against multiple attacks crafted from different
norms. First, we demonstrate that existing defense mech-
anisms can only protect against one type of attacks. Then
we consider a variety of strategies to mix defense mecha-
nisms and to build models that are robust against multiple
adversarial attacks. We show that Randomized Adversar-
ial Training offers the best global performance.
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