192 research outputs found

    Technique for Developing Criteria of Parolability

    Get PDF

    Scientific Status of Parole Prediction

    Get PDF

    Scientific Status of Parole Prediction

    Get PDF

    Projet de hadrontherapie a Lyon - Lignes de faisceau

    Get PDF
    Ce rapport decrit les lignes de faisceau du projet de hadrontherapie Rhone-Alpes, depuis la region d'extraction dans le synchrotron jusqu'aux chambres d'irradiation

    57Fe Mössbauer spectra from fluorinated phases of Fe0.50M0.50(M = Co,Mg)Sb2O4

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.International audienceFluorinated phases formed by reaction of Fe0.5Co0.5Sb2O4 and Fe0.5Mg0.5Sb2O4 with gaseous fluorine have been examined by 57 Fe Mössbauer spectroscopy between 298 and 5 K. The degree of oxidation of Fe2+to Fe3 +has been used to quantify the amount of fluorine incorporated within the channels of the schafarzikite-related structure and enable the evaluation of the compositions as Fe0.5Co0.5Sb2O4F0.41 and Fe0.5Mg0.5Sb2O4F0.31. The multiplicity of components observed in the spectra recorded in the paramagnetic regime can be related to the number of near neighbour fluoride ions which lie in the channels at the same value of the crystal z- coordinate as the iron ions. Comparison of the magnetically ordered spectra recorded at lower temperatures from Co0.5Fe0.5Sb2O4F0.41 with those recorded previously from FeSb2O4 indicates that the insertion of fluoride ions into the channels of the structure does not affect the angle between the EFG and magnetic hyperfine field

    The GUINEVERE Project for Accelerator Driven System Physics

    No full text
    paper 9414International audienceThe GUINEVERE project is part of the EUROTRANS Integrated Project of the 6th EURATOM Framework Programme. It is mainly devoted to ADS on-line reactivity monitoring validation, sub-criticality determination and operational procedures (loading, start-up, shut-down, ...) as a follow-up of the MUSE experiments. The project consists in coupling a fast lead core, set-up in the VENUS reactor at SCK*CEN Mol (B), with a GENEPI neutron source under construction by CNRS. To accommodate the accelerator in a vertical coupling configuration, the VENUS building is being heightened. The fast core will be loaded with enriched Uranium and will be moderated and reflected with solid lead (zero power experiment). For the purpose of the experimental programme, the neutron source has to be operated not only in pulsed mode but also in continuous mode to investigate the current-to-flux reactivity indicator in representative conditions of a powerful ADS. In this latter mode it is also required to make short beam interruptions to have access to the neutron population decrease as a function of time: from this spectrum it will be possible to apply different analysis techniques such as "prompt decay" fitting techniques and "source jerk" techniques. Beam interruptions will be repeated at a programmable frequency to improve time spectra statistics. Different sub-criticality levels (keff=0.99, 0.97, 0.95, ...) will be investigated in order to obtain a full set of data points for the final overall validation of the methodology. This paper describes the status of the experimental facility assembling, and the foreseen experimental programme to be started

    The GUINEVERE project at the VENUS facility

    No full text
    Proc. on CD Rom log315International audienceThe GUINEVERE project is an international project in the framework of IP-EUROTRANS, the FP6 program which aims at addressing the main issues for ADS development in the framework of partitioning and transmutation for nuclear waste volume and radiotoxicity reduction. The GUINEVERE project is carried out in the context of domain 2 of IP-EUROTRANS, ECATS, devoted to specific experiments for the coupling of an accelerator, a target and a subcritical core. These experiments should provide an answer to the questions of online reactivity monitoring, sub-criticality determination and operational procedures (loading, start-up, shutdown, …) in an ADS by 2009-2010. The project has the objective to couple a fast lead core, within the VENUS building operated by the SCK•CEN, with a neutron generator able to work in three different modes: pulsed, continuous and continuous with beam interruptions at the millisecond scale. In order to achieve this goal, the VENUS facility has to be adapted and a modified GENEPI-3C accelerator has to be designed and constructed. The paper describes the main modifications to the reactor core and facility and to the accelerator, which will be executed during the years 2008 and 2009, and the experimental programme which will start in 2009

    Development of a novel small antibody that retains specificity for tumor targeting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For the targeted therapy of solid tumor mediated by monoclonal antibody (mAb), there have different models of rebuilding small antibodies originated from native ones. Almost all natural antibody molecules have the similar structure and conformation, but those rebuilt small antibodies cannot completely keep the original traits of parental antibodies, especially the reduced specificity, which gravely influences the efficacy of small antibodies.</p> <p>Methods</p> <p>In this study, authors developed a novel mimetic in the form of V<sub>H</sub>FR1<sub>C-10</sub>-V<sub>H</sub>CDR1-V<sub>H</sub>FR2-V<sub>L</sub>CDR3-V<sub>L</sub>FR4<sub>N-10</sub>for a parental mAb induced with human breast cancer, and the mimetic moiety was conjugated to the C-terminal of toxicin colicin Ia. The novel fusion peptide, named protomimecin (PMN), was administered to MCF-7 breast cancer cells to demonstrate its killing competency <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p>Compared with original antibody-colicin Ia (Fab-Ia) and single-chain antibody-colicin Ia (Sc-Ia) fusion proteins, PMN retained the targeting specificity of parental antibody and could specifically kill MCF-7 cells <it>in vitro</it>. By injecting intraperitoneally into BALB/c athymic mice bearing MCF-7 tumors, with reduced affinity, PMN significantly suppressed the growth of tumors compared with control mice treated by toxicin protein, Fab-Ia protein, Sc-Ia protein or by PBS (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p>This novel mimetic antibody retained original specificity of parental antibody, and could effectively guide killer moiety to suppress the growth of breast cancer by targeted cell death.</p
    corecore