45 research outputs found

    The Carbohydrate-Binding Site in Galectin-3 Is Preorganized To Recognize a Sugarlike Framework of Oxygens: Ultra-High-Resolution Structures and Water Dynamics

    Get PDF
    The recognition of carbohydrates by proteins is a fundamental aspect of communication within and between living cells. Understanding the molecular basis of carbohydrate-protein interactions is a prerequisite for the rational design of synthetic ligands. Here we report the high- to ultrahigh-resolution crystal structures of the carbohydrate recognition domain of galectin-3 (Gal3C) in the ligand-free state (1.08 angstrom at 100 K, 1.25 angstrom at 298 K) and in complex with lactose (0.86 angstrom) or glycerol (0.9 angstrom). These structures reveal striking similarities in the positions of water and carbohydrate oxygen atoms in all three states, indicating that the binding site of Gal3C is preorganized to coordinate oxygen atoms in an arrangement that is nearly optimal for the recognition of beta-galactosides. Deuterium nuclear magnetic resonance (NMR) relaxation dispersion experiments and molecular dynamics simulations demonstrate that all water molecules in the lactose-binding site exchange with bulk water on a time scale of nanoseconds or shorter. Nevertheless, molecular dynamics simulations identify transient water binding at sites that agree well with those observed by crystallography, indicating that the energy landscape of the binding site is maintained in solution. All heavy atoms of glycerol are positioned like the corresponding atoms of lactose in the Gal3C complexes. However, binding of glycerol to Gal3C is insignificant in solution at room temperature, as monitored by NMR spectroscopy or isothermal titration calorimetry under conditions where lactose binding is readily detected. These observations make a case for protein cryo-crystallography as a valuable screening method in fragment-based drug discovery and further suggest that identification of water sites might inform inhibitor design

    Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries

    Get PDF
    Size and shape criteria for guest binding inside the cavity of an octanuclear cubic coordination cage in water have been established using a new fluorescence displacement assay to quantify guest binding. For aliphatic cyclic ketones of increasing size (from C5 to C11), there is a linear relationship between ΔG for guest binding and the guest’s surface area: the change in ΔG for binding is 0.3 kJ mol–1 Å–2, corresponding to 5 kJ mol–1 for each additional CH2 group in the guest, in good agreement with expectations based on hydrophobic desolvation. The highest association constant is K = 1.2 × 106 M–1 for cycloundecanone, whose volume is approximately 50% of the cavity volume; for larger C12 and C13 cyclic ketones, the association constant progressively decreases as the guests become too large. For a series of C10 aliphatic ketones differing in shape but not size, ΔG for guest binding showed no correlation with surface area. These guests are close to the volume limit of the cavity (cf. Rebek’s 55% rule), so the association constant is sensitive to shape complementarity, with small changes in guest structure resulting in large changes in binding affinity. The most flexible members of this series (linear aliphatic ketones) did not bind, whereas the more preorganized cyclic ketones all have association constants of 104–105 M–1. A crystal structure of the cage·cycloundecanone complex shows that the guest carbonyl oxygen is directed into a binding pocket defined by a convergent set of CH groups, which act as weak hydrogen-bond donors, and also shows close contacts between the exterior surface of the disc-shaped guest and the interior surface of the pseudospherical cage cavity despite the slight mismatch in shape

    An Interconverting Family of Coordination Cages and a meso-Helicate; Effects of Temperature, Concentration, and Solvent on the Product Distribution of a Self-Assembly Process

    Get PDF
    The self-assembly between a water-soluble bis-bidentate ligand L<sup>18w</sup> and Co­(II) salts in water affords three high-spin Co­(II) products: a dinuclear <i>meso</i>-helicate [Co<sub>2</sub>(L<sup>18w</sup>)<sub>3</sub>]­X<sub>4</sub>; a tetrahedral cage [Co<sub>4</sub>(L<sup>18w</sup>)<sub>6</sub>]­X<sub>8</sub>; and a dodecanuclear truncated-tetrahedral cage [Co<sub>12</sub>(L<sup>18w</sup>)<sub>18</sub>]­X<sub>24</sub> (X = BF<sub>4</sub> or ClO<sub>4</sub>). All three products were crystallized under different conditions and structurally characterized. In [Co<sub>2</sub>(L<sup>18w</sup>)<sub>3</sub>]­X<sub>4</sub> all three bridging ligands span a pair of metal ions; in the two larger products, there is a metal ion at each vertex of the Co<sub>4</sub> or Co<sub>12</sub> polyhedral cage array with a bridging ligand spanning a pair of metal ions along every edge. All three structural types are known: what is unusual here is the presence of all three from the same reaction. The assemblies <b>Co</b><sub><b>2</b></sub>, <b>Co</b><sub><b>4</b></sub>, and <b>Co</b><sub><b>12</b></sub> are in slow equilibrium (hours/days) in aqueous solution, and this can be conveniently monitored by <sup>1</sup>H NMR spectroscopy because (i) the paramagnetism of Co­(II) disperses the signals over a range of ca. 200 ppm and (ii) the different symmetries of the three species give characteristically different numbers of independent <sup>1</sup>H NMR signals, which makes identification easy. From temperature- and concentration-dependent <sup>1</sup>H NMR studies it is clear that increasing temperature and increasing dilution favors fragmentation to give a larger proportion of the smaller assemblies for entropic reasons. High concentrations and low temperature favor the larger assembly despite the unfavorable entropic and electrostatic factors associated with its formation. We suggest that this arises from the hydrophobic effect: reorganization of several smaller complexes into one larger one results in a smaller proportion of the hydrophobic ligand surface being exposed to water, with a larger proportion of the ligand surface protected in the interior of the assembly. In agreement with this, <sup>1</sup>H NMR spectra in a nonaqueous solvent (MeNO<sub>2</sub>) show formation of only [Co<sub>2</sub>(L<sup>18w</sup>)<sub>3</sub>]­X<sub>4</sub> because the driving force for reorganization into larger assemblies is now absent. Thus, we can identify the contributions of temperature, concentration, and solvent on the result of the metal/ligand self-assembly process and have determined the speciation behavior of the <b>Co</b><sub><b>2</b></sub>/<b>Co</b><sub><b>4</b></sub>/<b>Co</b><sub><b>12</b></sub> system in aqueous solution
    corecore