78 research outputs found

    Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from Pigs to Humans, Taiwan

    Get PDF
    We evaluated the disk susceptibility data of 671 nontyphoid Salmonella isolates collected from different parts of Taiwan from March 2001 to August 2001 and 1,261 nontyphoid Salmonella isolates from the National Taiwan University Hospital from 1996 to 2001. Overall, ciprofloxacn resistance was found in 2.7% (18/671) of all nontyphoid Salmonella isolates, in 1.4% (5/347) of Salmonella enterica serotype Typhimurium and in 7.5% (8/107) in S. enterica serotype Choleraesuis nationwide. MICs of six newer fluoroquinolones were determined for the following isolates: 37 isolates of ciprofloxacin-resistant (human) S. enterica Typhimurium (N = 26) and Choleraesuis (N = 11), 10 isolates of ciprofloxacin-susceptible (MIC <1 μg/mL) (human) isolates of these two serotypes, and 15 swine isolates from S. enterica Choleraesuis (N = 13) and Typhmurium (N = 2) with reduced susceptibility to ciprofloxacin (MIC >0.12 μg/mL). Sequence analysis of the gryA, gyrB, parC, parE, and acrR genes, ciprofloxacin accumulation; and genotypes generated by pulsed-field gel electrophoresis with three restriction enzymes (SpeI, XbaI, and BlnI) were performed. All 26 S. enterica Typhimurium isolates from humans and pigs belonged to genotype I. For S. enterica Choleraesuis isolates, 91% (10/11) of human isolates and 54% (7/13) of swine isolates belonged to genotype B. These two genotypes isolates from humans all exhibited a high-level of resistance to ciprofloxacin (MIC 16–64 μg/mL). They had two-base substitutions in the gyrA gene at codons 83 (Ser83Phe) and 87 (Asp87Gly or Asp87Asn) and in the parC gene at codon 80 (Ser80Arg, Ser80Ile, or Ser84Lys). Our investigation documented that not only did these two S. enterica isolates have a high prevalence of ciprofloxacin resistance nationwide but also that some closely related ciprofloxacin-resistant strains are disseminated from pigs to humans

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases

    Genome-Wide Association Study in Asian Populations Identifies Variants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus is a complex and potentially fatal autoimmune disease, characterized by autoantibody production and multi-organ damage. By a genome-wide association study (320 patients and 1,500 controls) and subsequent replication altogether involving a total of 3,300 Asian SLE patients from Hong Kong, Mainland China, and Thailand, as well as 4,200 ethnically and geographically matched controls, genetic variants in ETS1 and WDFY4 were found to be associated with SLE (ETS1: rs1128334, P = 2.33×10−11, OR = 1.29; WDFY4: rs7097397, P = 8.15×10−12, OR = 1.30). ETS1 encodes for a transcription factor known to be involved in a wide range of immune functions, including Th17 cell development and terminal differentiation of B lymphocytes. SNP rs1128334 is located in the 3′-UTR of ETS1, and allelic expression analysis from peripheral blood mononuclear cells showed significantly lower expression level from the risk allele. WDFY4 is a conserved protein with unknown function, but is predominantly expressed in primary and secondary immune tissues, and rs7097397 in WDFY4 changes an arginine residue to glutamine (R1816Q) in this protein. Our study also confirmed association of the HLA locus, STAT4, TNFSF4, BLK, BANK1, IRF5, and TNFAIP3 with SLE in Asians. These new genetic findings may help us to gain a better understanding of the disease and the functions of the genes involved

    Photoelectron spectroscopic studies of unstable molecular species

    No full text
    A photoelectron (PE) spectrometer has been modified to study unstable molecules. Reconstruction of the ionization chamber has made the ionization region more easily accessible, and a quadrupole mass spectrometer has been added in order to provide mass spectral identification data under the same conditions as the PE experiment. The system is controlled by a LSI 11/03 microcomputer with suitable interfacing hardware. A real-time operating system program has been developed for data handling. Light sources such as the HLc (Hydrogen Lyman a line, l0.2eV) and HL[sub=αβƴ] (a mixture of Hydrogen Lyman α, β and ƴ lines) radiations were used to reduce ion-fragmentation. Pure S₄N₄, S₄N₂, S₃N₃ and S₂N₂ were synthesized and studied with this system. The interrelationship between the gas phase reactivities of these compounds has been established. The study of CH₃NO, its trans and cis dimers, and its isomer, CH₂NOH, has clarified some mistakes in species identification in previous PE spectroscopic work on CH₃NO and its dimers. These two studies illustrate our ability to identify unstable species even in a very complex mixture with this system. A cryopump was constructed and may be positioned close to the ionization region opposite to the sample inlet, which may be a fine nozzle. This fast pumping nozzle system has been used to produce nearly pure N₂0, and a charge-transfer complex (CH₃)₂0-BF₃, and excellent PE spectra of these species were obtained. A library of computer programs has been established which provides a wide variety of quantum mechanical computations applicable to PE band assignments. These programs, such as CNDO/2, MINDO/3, MNDO, HAM/3, GAUSSIAN 70 and 76, and RSPT (for perturbation corrections to Koopmans' theorem), were used throughout this work and their accuracy and efficiency assessed. Koopmans' theorem has been shown to break down if applied to the ionization of CH₃NO and N₂O₄. Moreover, shake-up processes in the Hel region have been studied for these two molecules and S₄N₂. Several of the molecules, such as S₄N₂, S₃N₃ and (CH₃)₂0-BF₃, have not been investigated by PE spectroscopy before.Science, Faculty ofChemistry, Department ofGraduat

    Waste-Coffee-Derived Activated Carbon as Efficient Adsorbent for Water Treatment

    No full text
    Activated carbon prepared from waste coffee was utilized as a potential low-cost adsorbent to remove Rhodamine B from aqueous solution. A series of physical characterizations verify that the obtained activated carbon possesses a layered and ordered hexagonal structure with a wrinkled and rough surface. In addition, high specific surface area, appropriate pore distribution, and desired surface functional groups are revealed, which promote the adsorption properties. Various adsorption experiments were conducted to investigate the effect on the absorption capacity (e.g., of initial dye concentration, temperature and solution pH) of the material. The results showed that the waste-coffee-derived activated carbon with a large surface area of approximately 952.7 m2 g−1 showed a maximum uptake capacity of 83.4 mg g−1 at the pH of 7 with the initial dye concentration of 100 mg L−1 under 50°C. The higher adsorption capacity can be attributed to the strong electrostatic attraction between the negatively charged functional groups in activated carbon and the positively charged functional groups in RB. The kinetic data and the corresponding kinetic parameters were simulated to evaluate the mechanism of the adsorption process, which can fit well with the highest R2. The adsorption results confirmed the promising potential of the as-prepared waste-coffee-derived activated carbon as a dye adsorbent

    Interfacial Charge Transfer in MoS<sub>2</sub>/TiO<sub>2</sub> Heterostructured Photocatalysts: The Impact of Crystal Facets and Defects

    No full text
    One of the most challenging issues in photocatalytic hydrogen evolution is to efficiently separate photocharge carriers. Although MoS2 loading could effectively improve the photoactivity of TiO2, a fundamental understanding of the charge transfer process between TiO2 and MoS2 is still lacking. Herein, TiO2 photocatalysts with different exposed facets were used to construct MoS2/TiO2 heterostructures. XPS, ESR, together with PL measurements evidenced the Type II electron transfer from MoS2 to {001}-TiO2. Differently, electron-rich characteristic of {101}-faceted TiO2 were beneficial for the direct Z-scheme recombination of electrons in TiO2 with holes in MoS2. This synergetic effect between facet engineering and oxygen vacancies resulted in more than one order of magnitude enhanced hydrogen evolution rate. This finding revealed the elevating mechanism of constructing high-performance MoS2/TiO2 heterojunction based on facet and defect engineering

    Unusual kinematics-driven chemistry: Cleaving C-H but not COO-H bonds with hyperthermal protons to synthesize tailor-made molecular films

    No full text
    Unconventional reaction-design strategies have been developed to exploit the intriguing kinematics that occur when adsorbed organic molecules are bombarded by a beam of hyperthermal protons: kinematic energy transfer is only effective in H[RIGHTWARDS ARROW]H collisions and thus only C[BOND]H bonds are cleaved. This process yields a cross-linked molecular film with its chemistry governed by the selection of appropriate precursor molecules. Unlike the conventional wet-chemistry synthesis of cross-linked polymeric films, this new route uses no chemical initiators, additives, nor catalysts, and only requires a proton beam with a kinetic energy of a few electron volts in a dry-process mode compatible with molecular-device fabrication. The reaction designs are expressed unconventionally: reaction energy is tuned by the kinetic energy of the proton beam and reactant supply is controlled precisely by the proton fluence. However, conventional considerations such as bond-strength effects on kinematic outcomes and branching-ratio statistics are also important and they can extend the reaction applicability of the kinematics concept. For example, taking advantage of the fact that COO[BOND]H bonds are stronger than C[BOND]H bonds, we show, with practical reaction conditions, synthesis results, and surface analysis using X-ray photoelectron spectroscopy and atomic force microscopy, that we can break C[BOND]H bonds without breaking COO[BOND]H and other bonds, in the production of cross-linked molecular layers with any desirable COOH concentration and with no ester nor other chemical contaminations. The new reaction-design strategies are also applicable to the synthesis of molecular layers with other functionalities such as OH, and to the synthesis of a mixture of functionalities, such as OH/COOH, with a controllable concentration ratio

    Bandgap engineering of GaN nanowires

    No full text
    Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, while it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices

    Controlled fabrication of Si nanoparticles on graphene sheets for Li-ion batteries

    Get PDF
    A new route is presented for the synthesis of Si nanoparticle/Graphene (Si-Gr) composite by a sonochemical method and then magnesiothermic reduction process. During the process, silica particles were firstly synthesized and deposited on the surface of graphene oxide (SiO2-GO) by ultrasonic waves, subsequent low-temperature magnesiothermic reduction transformed SiO 2 to Si nanoparticles in situ on graphene sheets. The phase of the obtained materials was influenced by the weight ratio of Mg to SiO 2-GO. With the optimized ratio of 1 : 1, we can get Si nanoparticles on Gr sheets, with the average particle size of Si around 30 nm. Accordingly, the resultant Si-Gr with 78 wt% Si inside delivered a reversible capacity of 1100 mA h g-1, with very little fading when the charge rates change from 100 mA g-1 to 2000 mA g-1 and then back to 100 mA g-1. Thus, this strategy offers an efficient method for the controlled synthesis of Si nanoparticles on Gr sheets with a high rate performance, attributing to combination of the nanosized Si particles and the graphene. 2013 The Royal Society of Chemistry
    • …
    corecore