264 research outputs found

    Mass return to the interstellar medium from highly-evolved carbon stars

    Get PDF
    Data produced by the Infrared Astronomy Satellite (IRAS) was surveyed at the mid- and far-infrared wavelengths. Visually-identified carbon stars in the 12/25/60 micron color-color diagram were plotted, along with the location of a number of mass-losing stars that lie near the location of the carbon stars, but are not carbon rich. The final sample consisted of 619 objects, which were estimated to be contaminated by 7 % noncarbon-rich objects. The mass return rate was estimated for all evolved circumstellar envelopes. The IRAS Point Source Catalog (PSC) was also searched for the entire class of stars with excess emission. Mass-loss rates, lifetimes, and birthrates for evolved stars were also estimated

    Is the Cepheus E Outflow driven by a Class 0 Protostar?

    Full text link
    New early release observations of the Cepheus E outflow and its embedded source, obtained with the Spitzer Space Telescope, are presented. We show the driving source is detected in all 4 IRAC bands, which suggests that traditional Class 0 classification, although essentially correct, needs to accommodate the new high sensitivity infrared arrays and their ability to detected deeply embedded sources. The IRAC, MIPS 24 and 70 microns new photometric points are consistent with a spectral energy distribution dominated by a cold, dense envelope surrounding the protostar. The Cep E outflow, unlike its more famous cousin the HH 46/47 outflow, displays a very similar morphology in the near and mid-infrared wavelengths, and is detected at 24 microns. The interface between the dense molecular gas (where Cep E lies) and less dense interstellar medium, is well traced by the emission at 8 and 24 microns, and is one of the most exotic features of the new IRAC and MIPS images. IRS observations of the North lobe of the flow confirm that most of the emission is due to the excitation of pure H2 rotational transitions arising from a relatively cold (Tex~700 K) and dense (N{H}~9.6E20 cm-2 molecular gas.Comment: 14 pages (pre-print format), including 6 figures. Published in ApJ Special Spitzer Issue (2004

    Herschel observations of EXtra-Ordinary Sources (HEXOS): Methanol as a probe of physical conditions in Orion KL

    Get PDF
    We have examined methanol emission from Orion KL withthe Herschel/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated ΔJ = 0, K = −4 → −3, v_t = 0 Q branch, and includes 25 E-type and 2 A-type transitions. The 1061 GHz methanol band (observed in HIFI band 4b) is dominated by the ΔJ = 0, K = 7 → 6, v_t = 0 Q branch transitions which are mostly blended. We have used the isolated E-type v_t = 0 methanol transitions to explore the physical conditions in the molecular gas. With HIFI’s high velocity resolution, the methanol emission contributed by different spatial components along the line of sight toward Orion KL (hot core, low velocity flow, and compact ridge) can be distinguished and studied separately. The isolated transitions detected in these bands cover a broad energy range (upper state energy ranging from 80 K to 900 K), which provides a unique probe of the thermal structure in each spatial component. The observations further show that the compact ridge is externally heated. These observations demonstrate the power of methanol lines as probes of the physical conditions in warm regions in close proximity to young stars

    Herschel observations of EXtra-Ordinary Sources (HEXOS): The present and future of spectral surveys with Herschel/HIFI

    Get PDF
    We present initial results from the Herschel GT key program: Herschel observations of EXtra-Ordinary Sources (HEXOS) and outline the promise and potential of spectral surveys with Herschel/HIFI. The HIFI instrument offers unprecedented sensitivity, as well as continuous spectral coverage across the gaps imposed by the atmosphere, opening up a largely unexplored wavelength regime to high-resolution spectroscopy. We show the spectrum of Orion KL between 480 and 560 GHz and from 1.06 to 1.115 THz. From these data, we confirm that HIFI separately measures the dust continuum and spectrally resolves emission lines in Orion KL. Based on this capability we demonstrate that the line contribution to the broad-band continuum in this molecule-rich source is ~20−40% below 1 THz and declines to a few percent at higher frequencies. We also tentatively identify multiple transitions of HD^(18)O in the spectra. The first detection of this rare isotopologue in the interstellar medium suggests that HDO emission is optically thick in the Orion hot core with HDO/H_2O ~ 0.02. We discuss the implications of this detection for the water D/H ratio in hot cores

    The Herschel-SPIRE instrument and its in-flight performance

    Get PDF
    The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194–671 μm (447–1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4´× 8´, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6´. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5–2

    Herschel observations of ortho- and para-oxidaniumyl (H_2O^+) in spiral arm clouds toward Sagittarius B2(M)

    Get PDF
    H_2O^+ has been observed in its ortho- and para- states toward the massive star forming core Sgr B2(M), located close to the Galactic center. The observations show absorption in all spiral arm clouds between the Sun and Sgr B2. The average o/p ratio of H_2O^+ in most velocity intervals is 4.8, which corresponds to a nuclear spin temperature of 21 K. The relationship of this spin temperature to the formation temperature and current physical temperature of the gas hosting H_2O^+ is discussed, but no firm conclusion is reached. In the velocity interval 0–60 km s^(−1), an ortho/para ratio of below unity is found, but if this is due to an artifact of contamination by other species or real is not clear

    Detection of OH+ and H_2O+ towards Orion KL

    Get PDF
    We report observations of the reactive molecular ions OH+, H_(2)O+, and H_(3)O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H_(2)O+ 1_(11)–0_(00) transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H_(3)O+. OH+ and H_(2)O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s^(-1), and a broad blueshifted absorption similar to that reported recently for HF and para-H_(2)^(18)O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H_(2)O+ for the 9 km s^(-1) component of 9 ± 3 × 10^(12) cm^(-2) and 7 ± 2 × 10^(12) cm^(-2), and those in the outflow of 1.9 ± 0.7 × 10^(13) cm^(-2) and 1.0 ± 0.3 × 10^(13) cm^(-2). Upper limits of 2.4 × 10^(12) cm^(-2) and 8.7 × 10^(12) cm^(-2) were derived for the column densities of ortho and para-H_(3)O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate

    Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data

    Get PDF
    Aerosol remote sensing is very much dependent on the accurate knowledge of the top-of-atmosphere (TOA) reflectance measured by a particular instrument. The status of the calibration of such an instrument is reflected in the quality of the aerosol retrieval. Current data of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument (operated with the data processor version 5 and earlier) give too small values of the TOA reflectance, compared e.g. to data from MERIS (Medium Resolution Imaging Spectrometer), both operating on ENVISAT (ENVIronmental SATellite). This effect causes retrievals of wrong aerosol optical thickness and disables the processing of aerosol parameters. <br><br> From an inter-comparison of MERIS and SCIAMACHY TOA reflectance, for collocated scenes correction factors are derived to improve the insufficient SCIAMACHY L1 data calibration for data obtained with the processor 5 for the purpose of aerosol remote sensing. The corrected reflectance has been used for tests of remote sensing of the aerosol optical thickness by the BAER (Bremen AErosol Retrieval) approach using SCIAMACHY data
    corecore