22,610 research outputs found

    CDM, Feedback and the Hubble Sequence

    Get PDF
    We have performed TreeSPH simulations of galaxy formation in a standard LCDM cosmology, including effects of star formation, energetic stellar feedback processes and a meta-galactic UV field, and obtain a mix of disk, lenticular and elliptical galaxies. The disk galaxies are deficient in angular momentum by only about a factor of two compared to observed disk galaxies. The stellar disks have approximately exponential surface density profiles, and those of the bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios of the disk galaxies are consistent with observations and likewise are their integrated B-V colours, which have been calculated using stellar population synthesis techniques. Furthermore, we can match the observed I-band Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have approximately r^{1/4} stellar surface density profiles, are dominated by non-disklike kinematics and flattened due to non-isotropic stellar velocity distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much more comprehensive paper about this work with links to pictures of some of the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436

    Mapping the Asymmetric Thick Disk I. A Search for Triaxiality

    Full text link
    A significant asymmetry in the distribution of faint blue stars in the inner Galaxy, Quadrant 1 (l = 20 to 45 degrees) compared to Quadrant 4 was first reported by Larsen & Humphreys (1996). Parker et al (2003, 2004) greatly expanded the survey to determine its spatial extent and shape and the kinematics of the affected stars. This excess in the star counts was subsequently confirmed by Juric et al. (2008) using SDSS data. Possible explanations for the asymmetry include a merger remnant, a triaxial Thick Disk, and a possible interaction with the bar in the Disk. In this paper we describe our program of wide field photometry to map the asymmetry to fainter magnitudes and therefore larger distances. To search for the signature of triaxiality, we extended our survey to higher Galactic longitudes. We find no evidence for an excess of faint blue stars at l > 55 degrees including the faintest magnitude interval. The asymmetry and star count excess in Quadrant 1 is thus not due to a triaxial Thick Disk.Comment: 36 pages, 8 figures. Accepted by Astronomical Journa

    Observations of atmospheric water vapor with the SAGE 2 instrument

    Get PDF
    The Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) is discussed. The SAGE 2 instrument was a multichannel spectrometer that inferred the vertical distribution of water vapor, aerosols, nitrogen dioxide, and ozone by measuring the extinction of solar radiation at spacecraft sunrise/sunset. At altitudes above 20 km, the SAGE 2 and LIMS (Limb Infrared Monitor of the Stratosphere) data are in close agreement. The discrepancies below this altitude may be attributed to differences in the instruments' field of view and time of data acquisition

    Exact String Solutions in Nontrivial Backgrounds

    Full text link
    We show how the classical string dynamics in DD-dimensional gravity background can be reduced to the dynamics of a massless particle constrained on a certain surface whenever there exists at least one Killing vector for the background metric. We obtain a number of sufficient conditions, which ensure the existence of exact solutions to the equations of motion and constraints. These results are extended to include the Kalb-Ramond background. The D1D1-brane dynamics is also analyzed and exact solutions are found. Finally, we illustrate our considerations with several examples in different dimensions. All this also applies to the tensionless strings.Comment: 22 pages, LaTeX, no figures; V2:Comments and references added; V3:Discussion on the properties of the obtained solutions extended, a reference and acknowledgment added; V4:The references renumbered, to appear in Phys Rev.

    Non-linear optomechanical measurement of mechanical motion

    Get PDF
    Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of non-linear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic non-linearity of the radiation pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100~pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.Comment: 8 pages, 4 figures, extensive supplementary material available with published versio

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    Faint Fuzzy Star Clusters in NGC1023 as Remnants of Merged Star Cluster Complexes

    Full text link
    In the lenticular galaxy NGC1023 a third population of globular clusters (GCs), called faint fuzzies (FFs), was discovered next to the blue and red GC populations by Larsen & Brodie. While these FFs have colors comparable to the red population, the new population is fainter, larger (R_eff > 7 pc) and, most importantly, shows clear signs of co-rotation with the galactic disk of NGC1023. We present N-body simulations verifying the hypothesis that these disk-associated FFs are related to the young massive cluster complexes (CCs) observed by Bastian et. al in M51, who discovered a mass-radius relation for these CCs. Our models have an initial configuration based on the observations from M51 and are placed on various orbits in a galactic potential derived for NGC1023. All computations end up with a stable object containing 10 to 60% of the initial CC mass after an integration time of 5 Gyr. A conversion to visual magnitudes demonstrates that the resulting objects cover exactly the observed range for FFs. Moreover, the simulated objects show projected half-mass radii between 3.6 and 13.4 pc, in good agreement with the observed FF sizes. We conclude that objects like the young massive CCs in M51 are likely progenitors of the FFs observed in NGC1023.Comment: Accepted for publication in Ap

    From the WZWN Model to the Liouville Equation: Exact String Dynamics in Conformally Invariant AdS Background

    Get PDF
    It has been known for some time that the SL(2,R) WZWN model reduces to Liouville theory. Here we give a direct and physical derivation of this result based on the classical string equations of motion and the proper string size. This allows us to extract precisely the physical effects of the metric and antisymmetric tensor, respectively, on the {\it exact} string dynamics in the SL(2,R) background. The general solution to the proper string size is also found. We show that the antisymmetric tensor (corresponding to conformal invariance) generally gives rise to repulsion, and it precisely cancels the dominant attractive term arising from the metric. Both the sinh-Gordon and the cosh-Gordon sectors of the string dynamics in non-conformally invariant AdS spacetime reduce here to the Liouville equation (with different signs of the potential), while the original Liouville sector reduces to the free wave equation. Only the very large classical string size is affected by the torsion. Medium and small size string behaviours are unchanged. We also find illustrative classes of string solutions in the SL(2,R) background: dynamical closed as well as stationary open spiralling strings, for which the effect of torsion is somewhat like the effect of rotation in the metric. Similarly, the string solutions in the 2+1 BH-AdS background with torsion and angular momentum are fully analyzed.Comment: 24 pages including 4 postscript figures. Enlarged version including a section on string solutions in 2+1 black hole background. To be published in Phys. Rev. D., December 199

    Hole Spin Coherence in a Ge/Si Heterostructure Nanowire

    Get PDF
    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2∗∼0.18 μsT_2^* \sim 0.18~\mathrm{\mu s} exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.Comment: 15 pages, 4 figure

    Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    Get PDF
    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak height distribution has its maximum away from zero at zero magnetic field, with an average that decreases with increasing field. Magnetoconductance in the open-wire regime places a bound on the spin-orbit length (lsol_{so} < 20 nm), consistent with values extracted in the Coulomb blockade regime (lsol_{so} < 25 nm).Comment: Supplementary Information available at http://bit.ly/19pMpd
    • …
    corecore