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The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated
experimentally in a Ge/Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads
to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak height
distribution has its maximum away from zero at zero magnetic field, with an average that decreases with
increasing field. Magnetoconductance in the open-wire regime places a bound on the spin-orbit length
(lso < 20 nm), consistent with values extracted in the Coulomb blockade regime (lso < 25 nm).

DOI: 10.1103/PhysRevLett.112.216806 PACS numbers: 73.63.Nm, 71.70.Ej, 73.23.Hk, 78.67.Uh

Antilocalization, a positive correction to classical con-
ductivity, is commonly observed in mesoscopic conductors
with strong spin-orbit coupling [1,2], and has been well
studied in low-dimensional systems over the past two
decades [3–8]. In quantum wires (1D) and dots (0D),
the combination of coherence and spin-orbit coupling is a
topic of renewed interest in part due to numerous quantum
information processing proposals—from spin qubits to
Majorana modes—where these ingredients play a funda-
mental role [9–12]. Antilocalization in 1D systems has
been investigated in detail both theoretically [13–15] and
experimentally [16–19]. In 0D systems, antilocalization in
both the opened and nearly isolated Coulomb blockade
regime has been studied theoretically [20,21], but to
date experiments have only addressed the open-transport
regime, where Coulomb effects play a minor role [22,23].
The hole gas formed in the Ge core of a Ge/Si core-shell

nanowire [24] is an attractive system for exploring the
coexisting effects of coherence, confinement, and spin-orbit
coupling. Tunable quantum dots have been demonstrated
in this system [25,26], band structure calculations indicate
strong spin-orbit coupling [27], and antilocalization has
been demonstrated in the open-transport regime [28].
In this Letter, we investigate full distributions of

Coulomb blockade peak height as a function of magnetic
field in a gated Ge/Si core-shell nanowire. The low-field
distributions are consistent with random matrix theory [21]
of Coulomb blockade transport through a 0D system with
symplectic symmetry (valid for strong spin-orbit coupling),
and inconsistent with predictions for orthogonal symmetry
(low spin-orbit coupling). The high-field peak height
distribution is found to be a scaled version of the low-
field distribution, as expected from theory. However, the
observed scale factor, ∼2.3, is significantly larger than the
theoretical factor of 1.4 [21]. Temperature dependence of

the peak-height variance is consistent with theory using
a value for orbital level spacing measured independently
via Coulomb blockade spectroscopy. Consistent bounds
on the spin-orbit length, lso ≲ 20 − 25 nm, are found in the
Coulomb blockade and open transport regimes.
Coulomb blockade of transport through a 0D system

occurs when temperature, voltage bias, and lifetime broad-
ening are small compared to the charging energy, kT, V,
Γ ≪ e2=C, where V ¼ Vb þ Vac is the (dcþ ac) bias
across the device, C is the dot capacitance, e is the electron
charge, and Γ=ℏ ¼ τ−1escape is the tunnel rate out of the
system. When, in addition, kT, V, and Γ are less than the
orbital level spacing Δ, tunneling occurs through a single
(ground-state) wave function. In this latter case, Coulomb
blockade conductance peaks fluctuate in height from
peak to peak (cf. Fig. 1, bottom trace), depending on the
coupling of the ground-state wave function to modes in
the leads. The principle experimental result of this Letter
is that the distribution of Coulomb peak heights reveals
the presence of strong spin-orbit coupling, and allows a
bounding on the spin-orbit strength consistent with mea-
surements performed in the same wire in the open regime
(Fig. 1, top trace). The zero-field distribution is found to
differ markedly from that measured in GaAs quantum dots,
where spin-orbit coupling is relatively weak [29]. We first
review random matrix theory results that relate peak
statistics to wave function symmetries, then present exper-
imental results for a gated Ge/Si nanowire sample in the
Coulomb blockade and open wire regimes.
For disordered or chaotic dots, the statistics of couplings

between the modes in the leads and wave functions in the
dot can be calculated from randommatrix ensembles for the
dot Hamiltonian: orthogonal (β ¼ 1) for time-reversal
symmetric systems, unitary (β ¼ 2) for systems with
broken time-reversal symmetry, and symplectic (β ¼ 4)
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for time-reversal symmetric systems with broken spin
rotation symmetry. Including spin-orbit and Zeeman cou-
pling yields an extended random matrix theory with two
more parameters, s and Σ, in addition to the usual Dyson
parameter β [20]. The parameter s, reflecting Kramers
degeneracy, decreases from 2 to 1 with sufficient applied
magnetic field; the parameter Σ, reflecting the mixing
of Kramers-split levels, increases from 1 (unmixed) to
2 (mixed) with a sufficient combination of spin-orbit
coupling and magnetic field. These ensembles have
been investigated experimentally in the open-transport
regime [30].
Writing Γ ¼ Γl þ Γr for left and right leads, the

Coulomb peak height for Γ ≪ kT is given by

gp ¼ 2e2

ℏ
χs
kT

ΓlΓr

Γl þ Γr
¼ e2

ℏ
Γ̄

2kT
χsα; (1)

where α ¼ 4ΓlΓr=½Γ̄ðΓl þ ΓrÞ� fluctuates from peak to
peak with statistics that depend on β, Σ, and s, and
χs¼1 ¼ 1=8 and χs¼2 ¼ 3 − 2

ffiffiffi
2

p
account for effects of

Kramers degeneracy on Coulomb blockade [31]. At zero
magnetic field, the distribution of α for weak spin-orbit
coupling is given by [21,31,32]

Pβ¼1;Σ¼1;s¼2ðαÞ ¼
ffiffiffiffiffiffi
1

πα

r
e−α; (2)

whereas for strong spin-orbit coupling it is given by

Pβ¼4;Σ¼1;s¼2ðαÞ ¼ 16α3e−2α
�
K0ð2αÞþ

�
1þ 1

4α

�
K1ð2αÞ

�
;

(3)

where K0 and K1 are modified Bessel functions. The
distributions have ᾱ ¼ 1=2 and ᾱ ¼ 4=5 for weak and
strong spin-orbit coupling, respectively.
A consequence of the equality

Pβ¼2;Σ¼2;s¼1ðαÞ ¼ Pβ¼4;Σ¼1;s¼2ðαÞ (4)

is that for strong spin-orbit coupling, the peak height
distribution at high field is expected to be a scaled version
of the zero-field distribution, decreased by the ratio
χs¼2=χs¼1 ∼ 1.4 [21] due to lifting of Kramers degeneracy.
This is in contrast to the weak spin-orbit case, where the
high-field distribution differs markedly in shape from the
zero-field distribution, and the high-field mean height is
increased by a factor of 4=3 compared to zero field [32],
consistent with experiment [29,33].
The measured device was formed from a Ge/Si core-shell

nanowire (10 nm Ge core, 2 nm Si shell) [34] placed on an
array of Cr/Au bottom gates (2 nm=20 nm thick, 20 nm
wide, 60 nm pitch) patterned by electron beam lithography
on a native-oxide Si wafer, then covered with 25 nm of
HfO2 (grown by atomic layer deposition at 180 °C) before
depositing the wires. Patterned Ti/Pd Ohmic contacts were
deposited following a 3 s buffered HF etch. Conductance
was measured in a dilution refrigerator with electron
temperature T ∼ 100 mK using standard lock-in techniques
with ac excitation Vac ¼ 100 μV, except where noted. The
lock-in excitation was chosen to be as large as possible
without altering the peak height distribution. An in-line
resistance of 4.2 kΩ was subtracted from all data.
A typical orbital level spacing of Δ ∼ 0.2 meV was

measured from Coulomb blockade spectroscopy, as shown
in Fig. 1, inset. The number of holes NH in the Coulomb
blockade regime was estimated to be roughly 600, based on
counting Coulomb oscillations. The length of the quantum
dot was in the range L ¼ 200–600 nm, corresponding
to the length of the middle segment of the wire. For wire
width w ¼ 10 nm, this gives M ¼ 4w=λF ¼ 4–6, occupied
transverse modes, using a 3D estimate for the Fermi
wavelength, λF ¼ ð2π2Lw2=3NHÞ1=3 ∼ 6–9 nm. The elas-
tic scattering length l ¼ hμ=λFe ¼ 35–50 nm and mobility
μ ∼ 800 cm2=Vs were extracted from the slope of the
pinch-off curve (Fig. 4, inset) using g ¼ ðπw2=4LÞμne
[24,28]. Values in the open regime differ somewhat, as
discussed below.
Figure 1 shows the two-terminal conductance of the

nanowire as a function of a common voltage on gates 2, 3,
and 4, denoted V2–4, for a common voltage on gates 1 and
5, V1;5, corresponding to open regime (top trace) and
tunneling regime (bottom trace). V2–4 tune the hole density,
while V1 tunes the left barrier and V5 tunes the right barrier.
Coulomb blockade peaks appear when left and right
barriers have conductance less than 2e2=h. The open
regime shows weak dependence on gate voltage, with an
onset of Coulomb oscillations as conductance decreases;
the tunneling regime showed well-defined Coulomb
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FIG. 1 (color online). Device conductance g as a function of
gate voltages, V2–4 [notation indicates V2 ¼ V3 ¼ V4], with
Vac ¼ 50 μV. The device can be configured as an open wire
(top trace), or an isolated quantum dot (bottom trace). Left inset:
SEM micrograph of a lithographically identical device. Direction
of magnetic field B is indicated by the vertical arrow. Right inset:
dg=dVB in ðe2=hÞ=mV as a function of dc bias Vb and gate
voltages V2–3 yield orbital energy spacing Δ ∼ 0.2 meV.
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blockade peaks with fluctuating heights. The heights of
neighboring peaks appear correlated over roughly two
peaks, even at the lowest temperatures, similar to [29],
which decreases the effective ensemble size.
Representative sets of Coulomb blockade peaks at B ∼ 0

and 6 T [Figs. 2(a),2(b)] show a decrease in average peak
height at high field, as expected for strong spin-orbit
coupling. As temperature was increased above Δ, fluctua-
tions in peak height decreased rapidly, consistent with a
simple model that assumes resonant transport through
multiple, uniformly spaced levels [35] [Fig. 2(c)]. Note
that the same ensemble was used for each temperature. This
presumably accounts for the correlated departures from
theory at low temperature. The discrepancy with theory at
high temperature is unexplained, and is reminiscent of [36].
Peak height histograms for m ¼ 142 Coulomb peaks

(see the Supplemental Material [37]) show the evolution of
the distribution as a function of magnetic field [Fig. 3(a)].
The observed decreasing average peak height at higher
fields—Coulomb blockade antilocalization—as well as the
maximum in the distribution away from zero height at all
fields, are both signatures of strong spin-orbit coupling.
Figures 3(b) and 3(c) show peak height distributions

PðgpÞ ¼ ðᾱ=ḡpÞPβ;Σ;sðᾱgp=ḡpÞ ¼ N=ðmWÞ, where W is
the bin width and N is the bin count in Fig. 3(a), at low
and high magnetic fields.
The low-field data in Fig. 3(b) agree with the theoretical

distribution for strong spin-orbit coupling (β ¼ 4), with the
mean peak height taken from Fig. 3(a), and are inconsistent
with the theoretical distribution for weak spin-orbit cou-
pling (β ¼ 1). The high-field data in Fig. 3(c) are consistent
with a scaled version of the low-field theoretical distribu-
tion, as expected for strong spin-orbit coupling, but with a
scale factor of ∼2.3 rather than the theoretically predicted
factor of 1.4. The reason for this discrepancy—qualitative
scaling, but not by the predicted factor—is not understood,

but may result from changes in tunnel rates out of the dot or
changes in density of states in the leads, which are also
likely segments of the nanowire.
We have also examined the distributions of Coulomb peak

spacings, another statistical property that, in principle,
contains information about symmetries of wave functions
[39]. The measured distributions appear Gaussian with
similar widths for zero and higher magnetic fields, with a
standard deviation of 0.5 meV. This width is comparable to
the single-particle level spacing, as seen in previous exper-
imental studies [39,40]. We note that peak spacing distri-
butions aremore susceptible to experimental noise than peak
height distributions, so it is not surprising that peak height
distributions show field dependence while spacing distribu-
tions do not. Symplectic statistics associated with strong
spin-orbit coupling have been measured in the spacings
between excited states in metallic quantum dots [41].
To compare antilocalization in the Coulomb blockade

regime to the open-wire regime, we tuned the device to
more negative gate voltages, where Coulomb blockade
oscillations were absent [see Fig. 1(a)]. The number of
holes was larger in the open regime, NH ∼ 1700 and
λF ∼ 6 nm, again determined by counting Coulomb
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FIG. 2 (color online). Conductance g as a function of gate
voltages V2–3 with the device configured as a quantum dot for
(a) B ¼ 0 and (b) B ¼ 6 T. The application of a magnetic field
reduces the average peak height. (c) Peak height standard deviation
normalized by the ensemble-averaged peak height σ=ḡp versus
temperature T at B ¼ 0 (Vac ¼ 10 μV), based on ∼50 peaks per
point. Fluctuations of peak heights decrease for kT ∼ Δ. Theory
curve has no free parameters (see text). Insets: sample of peaks
showing diminished fluctuations at higher temperature.

0.10

0

g p
e( 

2
) h/

-6 -3 0 3 6

0.05

0.02

g p
 

e(
2

)h/

-6 0 6B (T)

20

0

P
(g

p
e( )

2
)h/
-1

0 0.1gp (e
2/h)

(a)

(b)

40

0

P
(g

p
e( )

2
)h/
-1

0 0.1gp (e
2/h)

(c)B (T)

data
        B ~ 0

 = 4
 = 1  

data
        B ~ 6 T  

 = 2
scaled  

0 20N

FIG. 3 (color online). (a) Histograms of Coulomb blockade peak
heights (color scale) as a function of magnetic field B. Line traces
show the smoothed conductance of three individual Coulomb
peaks. Average peak height decreases with B, while individual
peak heights fluctuate. Inset: measured mean peak height ḡp as a
function ofB, extracted from data in themain figure. (b) Peak height
distribution PðgpÞ for B ∼ 0 [range shown as the blue band at the
top of (a)]. Theory curves from Eq. (3) (solid) and Eq. (2) (dashed).
(c) Peak height distribution, PðgpÞ, for jBj ∼ 6 T [range shown as
red bands at the top of (a)]. Theory curves from Eq. (4) (solid),
which is the same as Eq. (3) scaled by 8ð3 − 2

ffiffiffi
2

p Þ ∼ 1.4 and
Eq. (3) scaled by a factor of 2.3 (dashed). The single experimental
parameter Γ̄=ðkTÞ is fixed using ḡp at B ¼ 0 from (a) inset.
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oscillations and assuming the device is depleted at pinch-
off. The inset of Fig. 4 shows that high-bias conductance
saturates at larger negative gate voltages, indicating a
decreasing mobility with increasing density. Similar
behavior has been reported in Ge/Si nanowires [24], Ge
nanowires [42], and Si heterostructures [43]. In Si hetero-
structures, this decrease in mobility was explained as
resulting from carriers being pulled toward the rough
heterointerface, as well as an increase in phase space for
scattering as more transverse subbands are occupied
[43,44]. Presumably, comparable effects occur in wires.
Magnetoconductance gðBÞ measured in the open-wire

regime, is shown in Fig. 4 along with a theory curve that
includes contributions from the wire, gwðBÞ, as well as
from the two contacts, each set to gc ¼ 2e2=h near the
onset of Coulomb blockade, gðBÞ ¼ ½2g−1c þ gwðBÞ−1�−1.
Following Ref. [14], we use the expression

gwðBÞ ¼ g∞ −
2e2

h
1

L

�
3

2

�
1

Dτϕ
þ 4

3Dτso
þ 1

DτB

�
−1=2

−
1

2

�
1

Dτϕ
þ 1

DτB

�
−1=2

−
3

2

�
1

Dτϕ
þ 4

3Dτso
þ 1

Dτe
þ 1

DτB

�
−1=2

þ 1

2

�
1

Dτϕ
þ 1

Dτe
þ 1

DτB

�
−1=2

�
(5)

for the magnetoconductance of the wire, where g∞ is the
classical (background) conductance, L ∼ 600 nm is the
length of the occupied region of the nanowire, D is
the diffusion constant, and τϕ, τso, τB, τe are the dephasing,
spin relaxation, magnetic, and impurity-impurity scattering
times. We note that in the present study, where le ≪ lϕ, the
last two terms ofEq. (5) do not play an important role, and, in
principle, could be dropped. We retain these terms, though

they have no discernible effect on the fits, for consistency
with the existing literature [16,19,28,45] for w < le.
The transport scattering length lt ¼ 2D=vf, where vf is

the Fermi velocity, the dephasing length lϕ, and the spin
precession length lso, then appear as [13,15] Dτϕ ¼ l2ϕ=2,
Dτe ¼ ltle=2,DτB¼C1ltl4B=w

3þC2ltlel2B=w
2, and Dτso ¼

C3ltl4so=w3, where l2B ¼ ℏ=eB. Contants C1 ¼ 4πð9.5Þ,
C2 ¼ 3ð24=5Þ apply for diffusive (specular) boundary
scattering [13], and we interpolate between these values
for specularity ϵ between zero (fully diffusive) and one
(fully specular). We use the specular value C3 ¼ 130 [15],
lacking a theoretical value for diffusive boundary scatter-
ing. The ratio of scattering lengths depends on specularity
and sample width lt=le ¼ Fðw=le; ϵÞ, with Fð·; 1Þ ¼ 1
[46]. These expressions require λF < w and w < le, the
former barely satisfied for λF ¼ 6 nm.
Four free parameters lso, g∞, le, and lϕ, are used to

fit theory to data. The transport scattering length is found
from lt ¼ ð4L=πw2Þhg∞=λFne2, where n ¼ 4NH=πw2L
is the 3D hole density (a reasonable model, given six
occupied transverse modes). Specularity can then be found
by inverting lt=le ¼ Fðw=le; ϵÞ, and the Fermi wavelength
can be found from the 3D density, λF ¼ ð8π=3nÞ1=3.
As seen in Fig. 4, the model fits the data very well, and
gives the following ranges for transport parameters
g∞ ¼ 0.2–0.7 e2=h, le < 10 μm, lt ¼ 15–25 nm lϕ ¼
ð0.2–1.2Þ μm, specularity in the range ϵ ¼ 0.4–1, and
lso < 20 nm. (Allowing lso > 20 nm gives good fits only
with le > 10 μm, which we rule out as unphysical.)
As a comparison between open and nearly isolated

regimes, we note that the observation of antilocalization
in Coulomb blockade implies ϵso > Δ, where ϵso is the
spin-orbit energy in the dot [21]. To convert this into a
spin-orbit length we assume the simple relation ϵso ¼
ℏ2=ð2m�l2soÞ [27] and the bulk heavy-hole effective mass
m� ¼ 0.28me. This gives lso < 25 nm, consistent with the
open regime measurement of lso < 20 nm.
It is interesting to consider the reason for the large

magnetic field scale associated with antilocalization in both
regimes. Flux cancellation due to boundary scattering is
known to enhance the effective magnetic length [13].
Flux cancellations of the effective spin-orbit magnetic field
can also occur [15]. These effects roughly cancel out,
and the field scale for antilocalization is then lB ¼ lso, or
B� ¼ ℏ=ðel2soÞ ¼ 3 T for lso ¼ 15 nm.
In summary, we have presented an experimental study

of Coulomb blockade peak height statistics in a Ge/Si
nanowire. Peak height distributions as well as the field
dependence of average peak height (antilocalization) are
consistent with the effects of strong spin-orbit coupling.
However, the observed decrease in average peak height
with applied magnetic field is larger than expected.
Magnetoconductance of the same device configured as
an open wire yields consistent results. Further investigation
of the spin-orbit strength in this system could come from
spectroscopic measurements of orbital anticrossings in a
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FIG. 4. Two-terminal conductance g in the open-wire regime as
a function of magnetic field B (points) along with theory, based
on Eq. (5), including contact resistance. Fit bounds spin-orbit
length, lso < 20 nm. Inset: pinch-off curve at bias Vb ¼ 10 mV.
Saturation at g ∼ 0.3e2=h indicates decreasing mobility in the
open regime (see text).
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quantum dot, or from electric-dipole spin resonance mea-
surements in a Ge/Si double quantum dot. Combined with
the expectation of long spin dephasing times in Ge/Si
quantum dots, the strong spin-orbit coupling found in this
work makes Ge/Si nanowire quantum dots attractive for
spin qubit applications.
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