17,292 research outputs found
Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds
This paper proves the first super-logarithmic lower bounds on the cell probe
complexity of dynamic boolean (a.k.a. decision) data structure problems, a
long-standing milestone in data structure lower bounds.
We introduce a new method for proving dynamic cell probe lower bounds and use
it to prove a lower bound on the operational
time of a wide range of boolean data structure problems, most notably, on the
query time of dynamic range counting over ([Pat07]). Proving an
lower bound for this problem was explicitly posed as one of
five important open problems in the late Mihai P\v{a}tra\c{s}cu's obituary
[Tho13]. This result also implies the first lower bound for the
classical 2D range counting problem, one of the most fundamental data structure
problems in computational geometry and spatial databases. We derive similar
lower bounds for boolean versions of dynamic polynomial evaluation and 2D
rectangle stabbing, and for the (non-boolean) problems of range selection and
range median.
Our technical centerpiece is a new way of "weakly" simulating dynamic data
structures using efficient one-way communication protocols with small advantage
over random guessing. This simulation involves a surprising excursion to
low-degree (Chebychev) polynomials which may be of independent interest, and
offers an entirely new algorithmic angle on the "cell sampling" method of
Panigrahy et al. [PTW10]
The Holographic Universe
We present a holographic description of four-dimensional single-scalar
inflationary universes in terms of a three-dimensional quantum field theory.
The holographic description correctly reproduces standard inflationary
predictions in their regime of applicability. In the opposite case, wherein
gravity is strongly coupled at early times, we propose a holographic
description in terms of perturbative QFT and present models capable of
satisfying the current observational constraints while exhibiting a
phenomenology distinct from standard inflation. This provides a qualitatively
new method for generating a nearly scale-invariant spectrum of primordial
cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including
background material and detailed derivations. To appear in Proceedings of 1st
Mediterranean Conference on Classical and Quantum Gravit
Time lower bounds for nonadaptive turnstile streaming algorithms
We say a turnstile streaming algorithm is "non-adaptive" if, during updates,
the memory cells written and read depend only on the index being updated and
random coins tossed at the beginning of the stream (and not on the memory
contents of the algorithm). Memory cells read during queries may be decided
upon adaptively. All known turnstile streaming algorithms in the literature are
non-adaptive.
We prove the first non-trivial update time lower bounds for both randomized
and deterministic turnstile streaming algorithms, which hold when the
algorithms are non-adaptive. While there has been abundant success in proving
space lower bounds, there have been no non-trivial update time lower bounds in
the turnstile model. Our lower bounds hold against classically studied problems
such as heavy hitters, point query, entropy estimation, and moment estimation.
In some cases of deterministic algorithms, our lower bounds nearly match known
upper bounds
A Semiconductor Nanowire-Based Superconducting Qubit
We introduce a hybrid qubit based on a semiconductor nanowire with an
epitaxially grown superconductor layer. Josephson energy of the transmon-like
device ("gatemon") is controlled by an electrostatic gate that depletes
carriers in a semiconducting weak link region. Strong coupling to an on-chip
microwave cavity and coherent qubit control via gate voltage pulses is
demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and
dephasing times (1 {\mu}s), exceeding gate operation times by two orders of
magnitude, in these first-generation devices. Because qubit control relies on
voltages rather than fluxes, dissipation in resistive control lines is reduced,
screening reduces crosstalk, and the absence of flux control allows operation
in a magnetic field, relevant for topological quantum information
Monitoring of the prompt radio emission from the unusual supernova 2004dj in NGC2403
Supernova 2004dj in the nearby spiral galaxy NGC2403 was detected optically
in July 2004. Peaking at a magnitude of 11.2, this is the brightest supernova
detected for several years. Here we present Multi-Element Radio Linked
Interferometer Network (MERLIN) observations of this source, made over a four
month period, which give a position of R.A. = 07h37m17.044s, Dec
=+65deg35'57.84" (J2000.0). We also present a well-sampled 5 GHz light curve
covering the period from 5 August to 2 December 2004. With the exception of the
unusual and very close SN 1987A, these observations represent the first
detailed radio light curve for the prompt emission from a Type II-P supernova.Comment: (1) Jodrell Bank Observatory (2) University of Valencia (3)
University of Sheffield 6 pages, 1 figure. To appear in ApJ letter
Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization
In this paper, probabilistic shaping is numerically and experimentally
investigated for increasing the transmission reach of wavelength division
multiplexed (WDM) optical communication system employing quadrature amplitude
modulation (QAM). An optimized probability mass function (PMF) of the QAM
symbols is first found from a modified Blahut-Arimoto algorithm for the optical
channel. A turbo coded bit interleaved coded modulation system is then applied,
which relies on many-to-one labeling to achieve the desired PMF, thereby
achieving shaping gain. Pilot symbols at rate at most 2% are used for
synchronization and equalization, making it possible to receive input
constellations as large as 1024QAM. The system is evaluated experimentally on a
10 GBaud, 5 channels WDM setup. The maximum system reach is increased w.r.t.
standard 1024QAM by 20% at input data rate of 4.65 bits/symbol and up to 75% at
5.46 bits/symbol. It is shown that rate adaptation does not require changing of
the modulation format. The performance of the proposed 1024QAM shaped system is
validated on all 5 channels of the WDM signal for selected distances and rates.
Finally, it was shown via EXIT charts and BER analysis that iterative
demapping, while generally beneficial to the system, is not a requirement for
achieving the shaping gain.Comment: 10 pages, 12 figures, Journal of Lightwave Technology, 201
- …