8,646 research outputs found

    Reconstruction of annular bi-layered media in cylindrical waveguide section

    Full text link
    A radial transverse resonance model for two cylindrical concentric layers with different complex dielectric constants is presented. An inverse problem with four unknowns - 3 physical material parameters and one dimensional dielectric layer thickness parameter- is solved by employing TE110 and TE210 modes with different radial field distribution. First a Newton-Raphson algorithm is used to solve a least square problem with a Lorentzian function (as resonance model and "measured" data generator). Then found resonance frequencies and quality factors are used in a second inverse Newton-Raphson algorithm that solves four transverse resonance equations in order to get four unknown parameters. The use of TE110 and TE210 models offers one dimensional radial tomographic capability. An open ended coax quarter-wave resonator is added to the sensor topology, and the effect on the convergence is investigated

    Limit Your Consumption! Finding Bounds in Average-energy Games

    Get PDF
    Energy games are infinite two-player games played in weighted arenas with quantitative objectives that restrict the consumption of a resource modeled by the weights, e.g., a battery that is charged and drained. Typically, upper and/or lower bounds on the battery capacity are part of the problem description. Here, we consider the problem of determining upper bounds on the average accumulated energy or on the capacity while satisfying a given lower bound, i.e., we do not determine whether a given bound is sufficient to meet the specification, but if there exists a sufficient bound to meet it. In the classical setting with positive and negative weights, we show that the problem of determining the existence of a sufficient bound on the long-run average accumulated energy can be solved in doubly-exponential time. Then, we consider recharge games: here, all weights are negative, but there are recharge edges that recharge the energy to some fixed capacity. We show that bounding the long-run average energy in such games is complete for exponential time. Then, we consider the existential version of the problem, which turns out to be solvable in polynomial time: here, we ask whether there is a recharge capacity that allows the system player to win the game. We conclude by studying tradeoffs between the memory needed to implement strategies and the bounds they realize. We give an example showing that memory can be traded for bounds and vice versa. Also, we show that increasing the capacity allows to lower the average accumulated energy.Comment: In Proceedings QAPL'16, arXiv:1610.0769

    The Non-Classical Boltzmann Equation, and Diffusion-Based Approximations to the Boltzmann Equation

    Full text link
    We show that several diffusion-based approximations (classical diffusion or SP1, SP2, SP3) to the linear Boltzmann equation can (for an infinite, homogeneous medium) be represented exactly by a non-classical transport equation. As a consequence, we indicate a method to solve diffusion-based approximations to the Boltzmann equation via Monte Carlo, with only statistical errors - no truncation errors.Comment: 16 pages, 3 figure

    Power Reveals:how clarity of responsibility shapes patterns of electoral accountability

    Get PDF

    Limiting absorption principle and radiation conditions for Schr\"odinger operators with long-range potentials

    Full text link
    We show Rellich's theorem, the limiting absorption principle, and a Sommerfeld uniqueness result for a wide class of one-body Schr\"odinger operators with long-range potentials, extending and refining previously known results. Our general method is based on elementary commutator estimates, largely following the scheme developed recently by Ito and Skibsted
    • …
    corecore