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Summary

A space tether is a cable used to connect spacecrafts in an orbiting structure.
If an electrical current is lead through the tether, it can be utilized to provide
propulsion for the spacecraft. In this case the cable is referred to as an electro-
dynamic tether. The system utilizes the magnetic field of the Earth for creating
a Lorentz force along the tether which occur when a current carrying wire oper-
ates in a magnetic field. The use of electrodynamic tethers are interesting since
they operate solely on electrical energy, which can be provided by solar panels
of the spacecrafts. In this way the amount of propellant a spacecraft need to
bring from Earth can be reduced.

In this thesis the modeling and control of electrodynamic tethers are investi-
gated, both when a single tether is used to connect two spacecrafts, and when
the tethers are used i more general formations of spacecrafts. One of the main
challenges when using electrodynamic tethers is that the force created along the
tether is based on an external uncontrollable condition, namely the magnetic
field. Even whit a known model of the magnetic field, limitations to the creation
of the Lorentz force still exists, since the force can only be generated perpendic-
ular to the instantaneous magnetic field. Furthermore, the control problem is
complicated by the time variations in the magnetic field. This thesis solves these
problems by utilizing an energy-based system description and a passivity-based
control design. An advantage of the energy-based approach is that the stability
of the system can easily be investigated, based on the energy flow in the system.

Systems of several spacecrafts connected by tethers has many applications, for
example in connection with space telescopes and space stations. Tethered for-
mations are advantageous, compared to formations of free-flying spacecrafts,
since a predetermined geometry of spacecrafts is easily maintained. This thesis
investigates the use of electrodynamic tethers for such tethered satellite forma-
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tions with focus on the modeling and control aspects. One can think of many
different structures for solving tasks in space, and separate derivations of the
dynamical equations can be cumbersome. It can therefore be advantageous to
be able to model a formation independent of its topology, i.e. the way tethers
and satellites are interconnected. The thesis treats a class of formations in a
generic framework, using graph theory to describe the topology of the forma-
tions. The framework can be used both to deduce the equations of motion for
the attitude motion of the formation and for control design regarding the same
motion.

The main part of the thesis consists of five scientific papers which have been
submitted for international journals and conferences during the PhD project.



Resumé

Et rumkabel (space tether) er et kabel, der forbinder rumfartøjer i en formation.
Ledes en elektrisk strøm gennem dette kabel, kan det anvendes til at p̊avirke
fremdriften af rumfartøjet. I dette tilfælde benævnes kablet elektrodynamisk
(electrodynamic tether). Systemet udnytter jordens magnetfelt til at danne en
Lorentzkraft distribueret langs kablet. Denne kraft opst̊ar ved en vekselvirkning
mellem det strømførende kabel og magnetfeltet. Brugen af elektrodynamiske
kabler er interessant, da de kan fungere alene ved tilførslen af elektrisk energi,
som kan leveres af solpaneler p̊a rumfartøjerne i formationen. P̊a denne måde
kan mængden af brændstof, der skal medbringes fra jorden, reduceres.

I denne afhandling er modelleringen og styringen af elektrodynamiske kabler
undersøgt, b̊ade i forbindelse med et enkelt kabel der forbinder to rumfartøjer
og i forbindelse med formationer af flere rumfartøjer. Et af hovedproblemerne
ved brugen af elektrodynamiske kabler er, at kraften der dannes langs kablet,
er afhængig af en ekstern størrelse, nemlig jordens magnetfelt. Selv med en
kendt model af jordens magnetfelt, er dannelsen af Lorentzkraften underlagt
restriktioner, da den kun kan dannes ortogonalt p̊a den aktuelle feltvektor. Reg-
uleringsproblemet bliver ydermere vanskeliggjort af tidsvariationerne i jordens
magnetfelt. I denne afhandling er disse problemer løst ved anvendelsen af en
energibaseret systembeskrivelse samt en passivitetsbaseret reguleringsmetode.
Metoden har blandt andet den fordel at stabiliteten af systemet let kan un-
dersøges gennem energistrømmen i systemet.

Flere rumfartøjer forbundne med kabler har flere anvendelsesomr̊ader, blandt
andet i forbindelse med rumteleskoper og rumstationer. Forbundne formationer
har den fordel, frem for formationer af frie rumfartøjer, at en fast struktur let kan
opretholdes. Denne afhandling undersøger brugen af elektrodynamiske kabler i
s̊adanne forbundne formationer, med fokus p̊a modellering og styring. Man kan
forstille sig mange forskellige formationer til løsning af opgaver i rummet, og det
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kan være tidskrævende at finde de dynamiske ligninger for alle formationerne
separat. Det er derfor fordelagtigt at kunne modellere formationerne uafhængigt
af deres topologi dvs. hvordan kabler og rumfartøjer er forbundne. Afhandlingen
undersøger en gruppe formationer med en fælles beskrivelse, hvor formationernes
topologi er udtrykt ved hjælp af grafteori. Beskrivelsen kan bruges b̊ade til at
finde bevægelsesligningerne for formationen, samt til at designe regulatorer.

Hoveddelen af nærværende afhandling best̊ar af fem artikler indsendt til inter-
nationale tidsskrifter og konferencer i løber af ph.d. projektet.



Preface

This thesis is written based on the research conducted during my PhD project
at the Technical University of Denmark, Department of Electrical Engineering.
The project was carried out from May 2007 to May 2010 founded by a DTU
scholarship. The supervisor of the project was Professor Mogens Blanke.

The thesis constitutes a collection of articles which have been submitted for
conferences and journals during the project. Since the articles represent work
carried out over a three year period, a consistent nomenclature have not been
possible.

This thesis treats the use of electrodynamic tethers in connection with single
tether systems and tethered satellite formations. For clarity the thesis is divided
according to these research areas. This division can, in some contexts, appear
enforced due to the gradual transition between the areas. The main focus of the
thesis is on the modeling and control aspects of such tethered satellite systems.

Martin Birkelund Larsen
Copenhagen, May 2010
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Chapter 1

Introduction

This thesis treats some of the modeling and control aspects of space tether
technology. The basic idea of the technology is quite simple, nevertheless its
potential is huge and the use of space tethers have been proposed in connection
with a large number of missions. The technology has been studied since the mid-
dle of the 1960’s, and several missions have been flown to prove and investigate
the concepts, especially during the 1990’s. The proposed concepts aim to solve
a variety of different tasks in space and covers numerous configurations. Only a
couple of the concepts will be highlighted here, but comprehensive descriptions
of many others are collected in [10].

A tethered satellite system (TSS) has been proposed in connection with the
creation of artificial gravity on spacecrafts. When two tethered satellites are
orbiting the Earth aligned with the local vertical axis, the center of mass (CM)
of the system will be placed somewhere along the tether. Each satellite will
experience a force directed away from the CM, due to the mismatch between
the gravitational and the centrifugal force. This force can constitute an artificial
gravity force. The force is, however, quite small, about one percent of the
gravity on Earth [31]. The magnitude of the artificial gravity can be increased by
spinning the system around its CM, and thereby create an additional centrifugal
force. Tethers could also be useful in connection with momentum exchange
between satellites. The idea is to use a TSS capable of capturing satellites
in low Earth orbits. The TSS will then, by inducing a librational or rotational
motion, be able to transfer the satellites to orbits of higher orbital energy, at the
cost of orbital energy of the TSS itself. Satellites in a tethered formation have
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also been proposed in connection with space interferometers, for example the
Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) proposed
by NASA [30]. The relative distances between the satellites are crucial in this
context and a TSS can reduce the use of propellant in connection with formation
control compared to a formation of free-flying satellites. The use of tethers are
also proposed in connection with re-entering the atmosphere of space capsules,
the so-called tethered spacemail concept. The idea is to deploy a capsule in
a tether from the main spacecraft, transport it to a lower orbit, and induce
pendulum like oscillation in the system. By cutting the tether at the right
position the capsule will lose orbital energy and move to a lower orbit from
where it will be reenter the atmosphere.

The concept of electrodynamic tethers (EDT’s) is one of the most innovative
proposal regarding TSS’s. The basic idea is to use the tether as a conducting
wire, along which a voltage is induced when the system is orbiting the Earth
through the magnetic field. The part of the atmosphere called the ionosphere is
ionized and contains free electrons. By collecting these electrons at one end of
the tether and emitting them at the other end, a current will flow through the
tether. The electrical circuit can be seen as being closed through a phantom
loop in the ionosphere. Since the electrons are moving in a magnetic field,
the current will furthermore give rise to an electrodynamic force (the Lorentz
force) acting along the tether. The collection of electrons can be done either
by use of a spherical collector or by a partly uninsulated tether called a bare
tether. The bare tether has the advantage that higher currents through the
tether can be obtained. Two properties of the concept can be utilized by space
missions: the generated electrical energy and the force acting on the tether.
The electrical energy can be used to power spacecrafts. The electrical energy
is converted from the orbital energy of the TSS, which as a consequence will
be transferred to a lower orbit. In case the TSS is intended to stay in orbit,
another force should be used to counteract the drag from the EDT. Utilizing the
electrodynamic force acting along the tether, an electrodynamic tether can be
used to perform orbit maneuvers. The system can either by used in generator
mode, which will decrease the orbital energy of the system or in thruster or
motor mode, which will increase the energy. For this reason the system is
also referred to as a plasma motor generator (PMG) system. When used in
thruster mode additional electrical energy must be supplied for example from
solar panels. Hence, in thruster mode electrical energy is converted to orbital
energy, while it is the other way around when using the system in generator
mode. In generator mode, the system has mainly been proposed in connection
with deorbiting [20, 21, 24, 43] of obsolete satellites, which is an important
task in order to mitigate the increasing amount of space debris. In thruster
mode, the system has been proposed to cancel out air-drag on the International
Space Station (ISS), a proposal that potentially can save one billion dollars over
ten years in connection with transportation of propellant to the ISS [22]. The
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concepts can also be used on a momentum exchange system in order to regain
the orbital energy lost by the exchange [57].

When connecting several satellites in a tethered satellite formation, a basic con-
cern is to ensure that the tethers are kept in tension. This can be achieved
using the gravity gradient or a drag force, in which case the formation is char-
acterized as a static formation. Alternatively, it can be done by spinning the
formation and thereby creating a centrifugal force, in which case the formation
is dynamic. A single tether system is considered as a static formation in most
investigations. In case the tethers are kept in tension, the modeling can be
simplified by substituting the flexible tethers with rigid rods.

A single tether system consists of a main satellite connected to a sub-satellite
or an endmass by a tether. The typical mission of a TSS is divided into three
phases: First, a deployment phase, where the tether is deployed from the main
satellite. Then an operational phase where the system performs a task. Last, a
retrieval phase where the system is put back in the initial configuration. Each
phase requires a control scheme, and these are typically treated separately due
to different dynamic properties of each phase.

The main problem when using TSS’s is the safety risk connected with the length
of the tether. Depending on the purpose of the tether and the masses of the
satellites involved, a tether can range from less than hundred meter to close
to fifty kilometers. When planing a mission with such a widespread structure,
the potential collision risk with other spacecrafts must be considered very care-
fully. As an example of this, it can be mentioned that the configuration of the
ProSEDS mission was changed due to a collisions risk with the International
Space Station (ISS). The changes included a shortening of the tether and was
introduced due to a change in the launch of the mission [15].

1.1 Tethered satellite systems in orbit

Several missions have been flown using space tether technology. Table 1.1
presents an overview of some of these. The purpose of the missions have in
general been to investigate the fundamental dynamics and, in case of an elec-
trodynamic tether, the electrodynamic properties of the TSS.

In 1992 and 1996 the missions TSS-1 and TSS-1R were flown as experiments on
the space shuttle missions STS-46 and STS-75, respectively. The experiments
investigated a 20 km long electrodynamic tether equipped with a spherical elec-
tron collector. During TSS-1 about 260 m of tether was deployed before the
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Name Year Tether Main investigation
TSS-11 1992 ∼ 260 m Electrodynamic tether
SEDS-1 1993 20 km Deployment (open-loop)
PMG1 1993 500 m Electrodynamic tether
SEDS-2 1994 20 km Deployment (closed-loop)
TSS-1R1 1992 ∼ 20 km Electrodynamic tether
TiPS 1996 4 km Long-time dynamics
ProSEDS1 (2003)2 15 km Bare electrodynamic tether
YES2 2007 ∼ 31 km Spacemail concept
1 Using electrodynamic tether.
2 Cancelled.

Table 1.1: Data of space missions involving tethers [10, 26, 31].

experiment was interrupted by a malfunction in the deployment mechanism.
TSS-1R repeated the experiment, and got about 19.5 km tether deployed, be-
fore the tether was broken. In spite of less successful course of events, the
experiment proved the concept of electrodynamic tethers and was able to create
the first experimental data for the current-voltage characteristics of the system
[39]. The concept of electrodynamic tethers was also investigated during the
PMG mission. The mission was able to reverse the current along the tether us-
ing an additional voltage source and thereby using the system in thruster mode
[23]. In connection with electrodynamic tethers the proposed mission ProSEDS
[1] should also be mentioned even though it was canceled. The mission was
supposed to test the concept of bare electrodynamic tethers, using a 15 km
long tether of which 5 km was uninsulated and conducting to increase its ca-
pability of collecting electrons. The remaining 10 km was non-conductive and
used to increase the gravity gradient affecting the system. In connection with
the ProSEDS mission the overview in Figure 1.1 was made of past and future
missions. Non of the future proposals have, however, been realized yet.

As regards electrodynamic tether systems that have been implemented, the
Termination TetherTM and nanoTerminatorTM should be mentioned. These
are commercial products designed for deorbiting of satellites by the company
Tethers Unlimited, Inc1. The Termination TetherTM [13] is designed for satel-
lites with a mass of less than 500 kg, while nanoTerminatorTM is intended for
nano-satellites like a CubeSat.

Beside the missions investigating the concept of electrodynamic tethers, a se-
ries of missions have investigated the dynamics of non-conduction tethers. The
missions SEDS-1 and SEDS-2 have investigated the deployment dynamics of a
TSS. The missions accomplished the deployment, controlling the tension along

1http://www.tethers.com

http://www.tethers.com


1.2 Literature survey 5

C
re
d
it
:
D
a
n
H
o
l
l
a
n
d
,
N
A
S
A
/
M
a
r
sh

a
l
l
S
pa

c
e
F
l
ig
h
t
C
e
n
t
e
r

Figure 1.1: Space tether mission overview.

the tether using an open-loop and a closed-loop strategy, respectively. The mis-
sions were successful in the way that the observed pendulum oscillations were
smaller than excepted [10]. The TiPS mission also investigated the dynamics of
the TSS, but at a longer time scale. The mission showed how tether oscillation
will be damped over time and the tether robustness against space debris was
established [49]. Recently, the YES2 mission tested the concept of spacemail,
using an over 30 km long tether. Even though the tether was deployed fur-
ther than planed, the capsule was released for reentering the atmosphere. The
capsule itself was never found due to lack of a beacon signal [26].

1.2 Literature survey

The survey, presented in this section, is divided according to the two main
research areas of this thesis: Single tether systems and tethered satellite forma-
tions. The survey will mainly focus on the fundamental results regarding the
modeling and control of the TSS and on the research regarding electrodynamic
tethers. More detailed reviews can be found in [27] and [4].
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1.2.1 Single tether systems

Modeling. One of the most comprehensive treatments of the modeling re-
garding space tethers was given in the book by Beletsky and Levin [2]. The
book deduced the equations of motion using a Newtonian approach for both
massless and massive tethers. This division made it possible to separate the at-
titude and the flexible motions of the system, and the corresponding equations
of motion were given as ordinary and partial differential equations, respectively.
A comprehensive list of the forces affecting the tether, and estimations of their
magnitude were given. The various oscillations of an massive tether were also
treated, together with ways to damp these. The basic properties of an elec-
trodynamic tether were also studied and the effect of the Lorentz force was
investigated in a simplified approached.

The modeling of a flexible tether was also treated in [58], which covered the com-
putational aspects of solving the equations of motion. The equations of motion
were deduced taking gravity and air drag into account and the resulting partial
differential equations were discretized using a Gelerkin modal approach and a
finite elements approach, respectively. The oscillations of a flexible electrody-
namic tether were investigated in [50] using modal analysis. Periodic solutions
induced by the magnetic field were found, and numerical simulations showed
them to be unstable. The electrodynamic tether was also investigated in [56]
for an inextensible tether. An linear stability analysis of the lateral oscillation,
concluded that the source of the instability were resonance between the forcing
term and the out-of-plane dynamics.

The dynamic model of a single tether system, where the satellites are modeled
as point masses and the tether as a rigid rod, was the subject of much research.
The unforced system was identical to a dumbbell satellite and its basic dynam-
ics was treated in [5, 38, 42]. When used in a electrodynamic setup with a
constant tether current, the Lorentz force will act as a periodic forcing term
of the dynamics and periodic solutions are induced. These periodic solutions
were approximated and investigated by Peláez et al. [47]. The solutions were
approximated for small tether currents using power series found by a pertur-
bation method. Furthermore, the solutions were found to be unstable using
Floquet theory. This conclusion was also reached by simulations of the energy
flow in the system. The periodic solutions were further investigated in [45] and
numerical approximations of the solutions were found for larger values of the
tether current than the power series allowed. The paper also investigated the
periodic solution of the unforced system using a Poincaré section in state space.
The main attitude control problem, when using electrodynamic tethers, occur
due to the torque originating from the Lorentz force used to actuate the orbit
motion. In the concept of self balanced electrodynamic tethers this problem
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was solved by canceling the total Lorentz torque [44]. The simple idea behind
the concept was to cancel out the torques acting on the upper and lower parts
of the tether, relative to the CM. This requires that the electric current profile
along the tether can be controlled or that the masses of the satellites and the
tether can be chosen to fulfill a balancing condition.

A fundamental treatment of the electrodynamic parts of an EDT system is given
in [20]. An equivalent electrical circuit was given for an uncontrolled single
tether, and the components of the circuit were treated based on the data from
the TSS-1R mission. The main challenge when using electrodynamic tethers is
to maximize the current flowing in the tether. To do this the concept of bare
tethers was introduced in [51]. The main idea behind the concept is to leave a
part of the tether uninsulated to increase the area for collecting electrons. This
will, however, lead to a variable current profile along the tether.

Control. The control of oscillations along an electrodynamic tether was in-
vestigated in [19]. This work included two control algorithms that used the
current through the tether as input. The first algorithm used motion feedback
from several point along the tether while the second only used feedback from the
sub-satellite. Simulations showed that the controllers could reduce the unstable
behavior of the tether oscillations. In [12] the vibrations along a nonconduct-
ing tether were damped by an active control law. The system was actuated
by controlling the tether tension at the attachment with the main satellite. A
control law for damping the longitudinal oscillations was used and the control
gains were found to optimize an energy based performance index.

The attitude control, or libration control, has been often treated for rigid EDT
systems. One simple approach was presented in [9] in connection with deor-
biting. The system was controlled by switching the current through the tether
on and off, based on the energy in the tether motion. The simplicity of this
approach prevented an asymptotically stable motion, but simulation showed
that the magnitude of the libration motion was limited. A controller for the
libration motion in the orbit plane was treated in [34]. The tether current was
controlled by means of a variable resistor in series with the tether and feedback
linearization was applied for the system. Stabilization of an equilibrium point
for both the in-plane and the out-of-plane motion is not possible, when only the
current through the tether is controlled. Therefore, a common control strategy
is to stabilize periodic solutions, e.g. the solutions induced by the magnetic field
when a constant current is applied to the tether. In [46] two controllers using
this strategy were investigated. The first approach used a feedback signal of the
difference between the states and a periodic solution, while the second used the
difference between the states and a delayed version of the states. The control
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laws were applied by means of additional actuators for in-plane and out-of-plane
motions. In [63] the periodic solutions were stabilized, using synchronization of
the libration energy with a known reference signal. This control law was ap-
plied varying only the current through the tether. Lately, a predictive control
law has been investigated in [65] varying the tether current. The control law was
based on a delayed feedback signal and included both the libration motion and
the orbit motion. Using a discrete version of the dynamics, the control signal
was found by minimizing the difference between the present and the delayed
libration motion.

The use of an electrodynamic tether will change the orbit of the TSS, hence or-
bit control is an important control task in this connection. The orbital changes
induced by a tether were investigated in [28]. The work included the attitude
dynamics of a rigid tether, a high fidelity model of the magnetic field, and a
detailed model of the electrodynamics. The changes in the orbit were modeled
using the equinoctial elements, to avoid the singularities for small orbit eccen-
tricities and orbit inclinations when using the classical orbital parameters. In
[59] a guidance scheme for an orbit maneuver was considered. The scheme was
based on a simple model ignoring the attitude dynamics and used the tether
current to actuate the orbital motion. The approach was expanded in [62] by
taking attitude dynamics into account. Ref. [64] used a similar approach, but
assumed that the tether was spinning with constant velocity in the orbit plane
and that no out-of-plane motion was excited.

1.2.2 Tethered satellite formations

Modeling. A variety of different types of tethered satellite formations have
been investigated in the literature. Figure 1.2 provides an overview of some
of the different configurations. The chain structure (see Figure 1.2a) is prob-
ably the most investigated type of formation. The study of chain structures
can both be motivated by multi-tether formations or by discretized versions of
single tether systems. A chain structure containing three satellites connected by
rigid rods was investigated in [37]. The equations of motion were found for both
fixed-length and variable-length tethers, and the stationary configurations of the
system were treated. A general chain structure with N satellites was investi-
gated by Misra and Modi [36]. The equations of motion were found for the com-
bined in-plane and out-of-plane motion, using variable-length tethers modeled
as massless rigid rods. It was shown that the in-plane natural frequencies ωθj

and the out-of-plane frequencies ωϕj fulfill the relation (ωϕj/Ω)
2
= (ωθj/Ω)

2
+1,

for j = 1, . . . , N − 1, assuming a system in a circular orbit with orbit rate Ω.
This work was expanded to take flexible tethers into account in [25]. The sta-
tionary configurations of a chain containing three satellites were investigated in
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Figure 1.2: Examples of different kinds of tethered satellite formations. The
figures are only examples of the structures.

[35]. The configurations were divided into collinear and triangular configura-
tions. All triangular configurations were shown to be unstable, while one of the
collinear ones was stable. Guerman [18] investigated the stationary configura-
tion situated in the orbit plane of an N -body chain connected by rigid rods. It
was shown that the stationary configurations were a combination of groups of
either vertical or horizontal rods, connected by no more than one rod. An upper
limit of configurations was stated as 22(N−1). This work was expanded to in-
clude general stationary configurations in three dimensions in [17]. When taking
both the in-plane and the out-of-plane dimensions into account the stationary
configurations follow much more complicated structures.

More complicated tethered formations have also been investigated. In [11] a
planar triangle formation (see Figure 1.2b) was investigated in connection with
interferometry. The formation was assumed to be spinning around an axis per-
pendicular to the plane of the satellite and the dynamics was deduced assuming
rigid tethers. The validity of this assumption was investigated by considering
the forces along the tethers. A hub-and-spoke formation (see Figure 1.2c) con-
sists of a main satellite, to which a number of sub-satellites are tethered. In
case the sub-satellites are tethered to each other as well, the formation is called
closed-hub-and-spoke (see Figure 1.2d). A double pyramid formation consist
of a planar formation, tethered to an anchor satellite at each side (see Figure



10 Introduction

1.2e). The formation is spinning around an axis perpendicular to the formation
plane, through the two anchor satellites. The hub-and-spoke and the closed-
hub-and-spoke formations were investigated in [48] assuming the parent body
followed a circular orbit. The formations were investigated with an initial spin
around the axis perpendicular to the orbit plane and around the position vector
of the system relative to the Earth. The hub-and-spoke formation was, in gen-
eral, unstable when rotating in the orbit plane, while the closed-hub-and-spoke
was stable. When spinning around the radial vector the closed-hop-and-spoke
formation was found to exhibit an unstable behavior. The formation could,
however, be stabilized by two additional anchor satellites, turning the forma-
tion into a double pyramid. A double pyramid formation spinning around the
axis through the anchors was also treated in [60]. The rotational axes leading
to a stationary configuration were stated as a function of the size of the for-
mation and the spinning rate, and their stability properties were investigated
through simulations. Furthermore, a relation, between the system parameters
guaranteeing positive tension along the tethers, was given.

Control. The main task of the motion control in connection with tethered
satellite formations is to maintain a desired formation structure, i.e. to control
the relative positions of the satellites in a formation. When using rigid approx-
imations of the tethers, the investigation of the control strategy can include an
analysis of the tension along the tether to be sure that the rigid approximation
is valid. In the case that a spinning formation is considered it can also be an
objective to control the rate of spinning along with the plane of rotation.

In [36] a control law was considered for a three satellite chain structure, where
the length of both tethers was assumed to vary exponentially. The rate of
change in the length of the tethers is controlled by a velocity feedback, and the
energy flow of the system was considered to obtain stability. A chain structure
were also considered in [32], where one satellite constituted an elevator which
could move along the tether. The movement of this elevator was controlled by
an open-loop strategy and induced oscillations in the system were investigated
through simulations. An open-loop retargeting strategy for an interferometer
was developed in [3], considering a formation consisting of three satellites in a
spinning chain formation. The strategy applied electrical thrusters on two of
the satellites, to actuate the system. The retargeting maneuver, i.e. changing
the plane of rotation, was investigated using a perturbation method, and the
equations of motion were solved analytically in this way. In [7, 8] a decentral-
ized control strategy was applied to a chain structure of two and three satellites.
The strategy considered a planar motion of a spinning satellite formation. The
control law considered the attitude of each satellite and the spin rate of the
formation, and was decentralized in the sense that the torque applied at each
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satellite was based only on the attitude of the same satellite. Control of a trian-
gle and a hub-and-spoke formation was investigated in [53] for a planar motion.
The formation was controlled, using reaction wheels at each satellite. The work
also investigated the alternative of using an electromagnetic formation flight
(EMFF), instead of a tethered one. In an EMFF the formation structure is
maintained through interconnection of controllable electromagnetic fields gen-
erated at each satellite.

1.3 Outline

The outline of the remaining parts of this thesis is as follows. The next two
chapters contain a review of the research conducted in the two main areas of
this thesis: Single tether systems are considered in Chapter 2, and tethered
satellite formations are treated in Chapter 3. The reviews are intended to give
an overview of the work done in the areas. Each chapter is concluded with a
summery of the papers included in this thesis, where the main ideas and con-
tributions will be highlighted. Chapter 4 contains reflections and conclusions of
the work. Afterwards follows the five papers included in the thesis in chrono-
logical order. The papers are included as independent chapters with separate
bibliographies to reflect the way the papers was published.
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Chapter 2

Single Tether Systems

The research in the area of single tether systems has focus on the attitude motion
of the TSS. The attitude motion is important for two main reasons: First, to
be able to perform an orbit maneuver using an EDT, the thrust generated
by the Lorentz force must be properly directed in order to obtain the desired
orbit correction. This direction is determined by the orientation of the system.
Second, to minimize the potential safety risk the TSS constitutes. With a
tether close to 50 km in length the risk of collision with other spacecrafts must
be considered very carefully, and control of the tether motion is crucial to be
able to estimate this risk.

2.1 Modeling

The model of the attitude dynamics includes two degrees of freedom (DOF),
the in-plane motion and the out-of-plane motion. The model is nonlinear, un-
deractuated, and time-periodic, and is deduced in a dimensionless formulation.
The electrodynamic tether will be considered as the only actuator of the system,
and the current through the tether is, therefore, the sole input of the model.
The model is the basis for the work in [A,B,C]. The derivation of the model is
treated in further detail in Paper C.
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2.1.1 Equations of motion

The equations of motion are deduced in a Hamiltonian framework, for an as-
sumed constant-length tether. This framework is mainly chosen, since it is based
on an energy function which can be utilized during the control design. The mo-
tion is described in the orbit frame, with origin at the center of mass (CM) of
the TSS. To capture the attitude motion of the system, the frame follows the
orbit motion. The x-axis of the frame is placed along the position vector from
the Earth to the CM, and the z-axis is perpendicular to the orbit plane. The
y-axis completes the right-handed coordinate system. Figure 2.1 illustrate the

x

y

z

b

θ

ϕ

Orbit trajectory

Figure 2.1: Description of a TSS in the orbit frame.

single tether system described in the orbit frame. The CM coincides with the
main satellite, since this satellite is assumed the main contributor of the total
mass. The orbit is assumed circular, hence the orbit velocity is aligned with the
y-axis. Tether positions situated along the x-axis are denoted vertical, while
tethers placed along the y-axis are horizontal. The Hamiltonian is given as,

H =
1

2

(
p2ϕ +

(pθ + 1)2

cos2 ϕ
− 2pθ − 3 cos2 θ cos2 ϕ

)
+ 1. (2.1)

where θ and ϕ are the in-plane and the out-of-plane angles, respectively, shown in
Figure 2.1. The generalized momenta associated with θ and ϕ are denoted pθ and
pϕ. The Hamiltonian includes the kinetic energy and the gravitational potential.
Furthermore, the centrifugal and the Coriolis potentials are included, since the
motion is described in a rotation frame. The Hamiltonian is positive definite
around the origin. The function is a dimensionless quantity, and all parameters
for the formulations are collected as a gain of the input. The equations of motion
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are given by Hamilton’s equation,

q̇ =
∂H

∂p
, (2.2a)

ṗ = −∂H

∂q
+Q, (2.2b)

where Q is a dimensionless version of the generalized force originating from
the Lorentz force. The generalized coordinates are collected in q = [θ ϕ]T and
the momenta in p = [pθ pϕ]

T , while the partial derivatives of H are defined as
column vectors. The time-derivatives are taken with respect to the true anomaly
ν that describes the position in the orbit. The orbit velocity is constant along
the orbit, due to the circular orbit assumption, and ν is linearly increasing with
time. The true anomaly is therefore easily adopted as the time-variable of the
system description, and is sometimes referred to as the non-dimensional time.
The use of ν as time-variable induces that the periodic variations originating
from the orbit motion have a fundamental period of 2π. The level curves of
the Hamiltonian are shown in Figure 2.2a in the configuration space for zero
momenta. It is seen that there exist a potential well around the origin. To
escape this well a dimensionless energy of H = 1.5 must be obtained. As seen
from (2.2) the equilibria of the unforced system are placed at the stationary
points of the Hamiltonian. There exist four equilibria on the sphere defined by
q, three of which are shown in Figure 2.2a. All four equilibria are situated in
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Figure 2.2: Illustrations of the open-loop equilibria.

the orbit plane, in vertical and horizontal positions as shown in Figure 2.2b.
The horizontal equilibria are stable and the vertical are unstable, which is also
clear from the level curves of H . The orbit frame is introduced such that the
equilibrium pointing towards the Earth coincides with the origin. The choice to
describe the motion around the lower instead of the upper horizontal equilibrium
has only minor effect due to the symmetry of the Hamiltonian.
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The main simplification of the formulation is to model the tether as a rigid rod.
This assumption has the obvious advantage that flexible modes along the tether
are ignored, and the attitude motion is thereby isolated. The assumption can be
justified when working around a vertical equilibrium, where the gravity gradient
will ensure tension along the tether. Another assumption is that the TSS follows
a circular orbit. This assumption is mainly introduced to avoid the periodic
disturbance originating from an elliptic orbit. The introduction of a slightly
elliptic orbit would introduce a periodic motion around the equilibrium of the
circular case. These periodic trajectories can be found using a perturbation
method, similar to the one that will be used later to determine the periodic
solution originating from the Lorentz force. The in-plane component of this
motion was investigated in [67] and was found to be stable for eccentricities up
to about e = 0.3.

2.1.2 Actuator modeling

The attitude motion is actuated by the torque originating from the Lorentz
force, which can be written as,

F = Ir ×B, (2.3)

where I is the tether current, r is a unit vector along the tether, and B the
magnetic field. The cross product in (2.3) introduces some limitations in the
actuation of the system. The cross product vanishes when the tether orientation
is perpendicular to the magnetic field, in which case the system in unactuated.
This orientation will, however, change with the orbit position, and thereby be
time-varying. This phenomenon is well known when using B-dot control for
the attitude motion of satellites [66], where torques around the magnetic field
vector is not possible. The control problem of the electrodynamic tether becomes
even more complicated, since it is underactuated when the current I constitute
the only control input. The underactuated nature can be seen from the cross
product in (2.3) where the magnitude of the Lorentz force can be controlled,
while the direction is determined by the time-varying magnetic field and the
attitude of the system.

A model of the magnetic field of the Earth is essential to the modeling of the
actuator and can be done with almost arbitrary precision. The International
Geomagnetic Reference Field provides a high fidelity model, based on a spherical
harmonic expansion [33]. It is, however, common to simplify the modeling
using a dipole model, especially when used in an analytical context. The dipole
approximation can either be done as a so-called aligned dipole or tilted dipole
as shown in Figure 2.3. The aligned, or non-tilted, dipole has its dipole moment
along the rotational axis of the Earth, while the dipole moment of the tilted
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(a) Aligned dipole (b) Tilted dipole

Figure 2.3: Dipole approximation of the magnetic field of the Earth.

dipole is inclined to reflect the fact that the magnetic and geographic north
pole do not coincide. From a modeling point of view the advantage of the
aligned dipole is that the magnetic field is symmetric around the rotational axis
of the Earth, and thereby independent of the rotation of the Earth. In this work
the aligned dipole model has been used to model the magnetic field. In [C] the
tilted dipole have been utilized to model perturbations in the magnetic field,
with the advantage that limits on these perturbations can be determined. The
field from an aligned dipole model can be expressed in the orbit frame as,

B =
µm

R3



−2 sin ν sin i
cos ν sin i

cos i


 , (2.4)

where i is the orbit inclination, ν the true anomaly expressing the orbit position,
and R the orbit radius. The strength of the magnetic field is determined by
µm ≈ 7.79 × 1015 Tm3. As seen from (2.4) the magnetic field will be constant
and perpendicular to the orbit plane in case of circular-equatorial orbit. In this
case, only the in-plane motion is affected by the Lorentz force, and it is therefore
a common assumption when investigating the in-plane motion separately. The
periodic variation in the magnetic field, for an inclined orbit, is induced by the
periodic orbit motion through the magnetic field. In case a more precise, but
still static, model of the magnetic field is used, the periodic changes would be
induced by the orbit motion and the rotation of the Earth, in combination. This
combination will change the period of the variation, or lead to quasi periodic
changes.
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2.1.3 Total system description

Combining all parts of the modeling the equations of motion (2.2) can be written
in the compact Hamiltonian form,

ẋ = J
∂H

∂x
+ g (ν, θ, ϕ, i)u, (2.5)

where u is a dimensionless input proportional to the tether current and x =
[θ ϕ pθ pϕ]

T is the state vector. The matrix J is given as,

J =

[
0 I2×2

−I2×2 0

]
(2.6)

with I2×2 being a 2 × 2 identity matrix. The system is actuated through the
input function g, which is 2π periodic in time ν. The function also depends on
the generalized coordinates and the orbit inclination i.

2.1.4 Open-loop periodic solutions

When using a constant tether current u 6= 0 the input function acts as a time-
periodic forcing term, which will give rise to families of periodic solutions. This
constant input term can be seen as a bias term for the system. Such a family
was investigated by Peláez et al. [47]. The solutions were approximated by
power series for small inputs, using a perturbation method treated in the next
section. A stability analysis showed that the solutions were unstable, although
the instability evolved quite slowly. The solutions were characterized as weakly
unstable up to a certain limit u∗, since the larges characteristic multiplier was
placed on the unit circle for u < u∗, when analysing a linear approximation of
the dynamics. An eight order series approximation of the periodic solutions are
shown in Figure 2.4 for some constant values of u. The series is only valid for
small u, and the deviation from the real solutions increase with u due to the
finite number of terms. The real solutions are, however, hard to simulate due
to their unstable nature.

2.1.5 Perturbation theory

The input current affecting the system can be seen as a small quantity per-
turbing the system behavior. For this reason perturbation theory is a useful
tool when analyzing the EDT system. The purpose of perturbation theory is
to approximate a solution of a perturbed equation, based on a know solution
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Figure 2.4: Periodic open-loop solutions for different bias values.

of the unperturbed equation. The theory can be applied both to algebraic and
differential equations. The main idea is to expand the quantities of the equation
in power series in the small perturbation quantity ε. Inserting these series, the
equation can be divided into an equation for each power of ε. In case of a linear
system,

ẋ(t) = A(t, ε)x(t), (2.7)

the state and the system matrix are written as,

x(t) = x0(t) + εx1(t) + · · · =
N∑

n=0

εnxn(t), (2.8)

A(t) = A0(t) + εA1(t) + · · · =
N∑

n=0

εnAn(t). (2.9)

Inserting these series the system equation (2.7) can be divided into,

ε0 : ẋ0(t) = A0(t)x0(t), (2.10a)

ε1 : ẋ1(t) = A0(t)x1(t) +A1(t)x0(t), (2.10b)

ε2 : . . .

where the first equation corresponds to the unperturbed system (ε = 0). The
equations can be solved in an iterative matter, where the solutions of the pre-
ceding equations act as forcing terms for the current equation. In this way
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the solution (2.8) is expanded with one power for each equation. The system-
atic way of approximating a solution make perturbation methods well suited
for implementation using symbolic math software. One problem when using
perturbation theory is the radius of convergence of the approximated solution,
which can be hand to establish. When using a perturbation theory to find peri-
odic solutions of a differential equation, as in the case of the open-loop system,
Poincaré-Lindstedt method can be applied [16]. The idea is to chose the in-
tegrations constants in the solution of (2.10) to avoid so-called secular terms,
i.e. terms which are unbounded.

In Paper B the Poincaré-Lindstedt meehod is used to approximate a familty of
stable closed-loop periodic solutions. Since the control algorithm includes two
parameters the methods is expanded to include two perturbation quantities.
In Paper C the stability of the closed-loop periodic solutions is investigated,
by approximating the characteristic multipliers using a perturbation method
[54, 55].

2.2 Control strategies

The underactuated nature of the system introduces some challenges with re-
spect to the control design, actually it prevents the creation and thereby the
stabilization, of an equilibrium point in state space. It is therefore a common
strategy to stabilize the attitude motion in a periodic trajectory. The zeros in
the input function also introduce some difficulties when classical control meth-
ods are used. Furthermore, the time-periodic nature of the system caused the
need for Floquet analysis to evaluate the stability properties of the system. Pa-
per [A] stabilizes the open-loop equilibria using a passivity-based control law.
The stabilization of periodic solutions is investigated in [B] and [C] also using a
passivity-based method.

2.2.1 Passivity-based control

The motivation for using a passivity-based control approach is the existence of
zeros in the input function of the model (2.5). These zeros give problems for
many classical methods, for example all the methods investigated in [29]. The
problem is that the system, or a part of the system, is unactuated when a zero
occurs. The way most classical approaches, like feedback linearization, handles
variations in the input function is to divide with a similar quantity which cancel
out these variations. This strategy can, however, introduce singularities in the
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control law if a change of sign occurs in the input function. To avoid these
singularities one could, switch to alternative controllers when the system state
is in the proximity of such a singularity. This was done for the TSS in [68]. The
use of a passivity-based method can, however, offer a more elegant solution.
Another reason for investigating passivity-based approaches for the system is
that the equations of motion are given using an energy based formulation. In
this case we can utilize the energy function of the system as a storage function in
the passivity formulation. The energy function provide a single value function
which encapsulate the system behavior, both regarding stationary and dynam-
ical properties. for this reason an energy-based approach can be advantageous
especially when dealing with complex systems [40].

The basis for the passivity-based control investigated during this project is the
port-controlled Hamiltonian (PCH) formulation [41, 52]. The port-controlled
Hamiltonian formulation offers directly an energy based method to model phys-
ical systems, considering the energy flow between system components, dissi-
pation, and energy supplied through input signals. The classical Hamiltonian
formulation is expanded to include damping and an output. In the following,
this will be presented for a general system with state vector x ∈ R

n, input
u ∈ R

m, and output y ∈ R
m,

ẋ = (J (t,x)−R(t,x))
∂H(t,x)

∂x
+ G (t,x)u, (2.11)

y = GT (t,x)
∂H(t,x)

∂x
. (2.12)

In this general formulation the damping matrix R ∈ R
n×n is positive semi-

definite R ≥ 0. The matrix J ∈ R
n×n is called the interconnection matrix and

fulfills J = −J T . Both matrices can be both time and state dependent, which
is also the case for the Hamiltonian H ∈ R. The formulations offers a passive
input-output connection in case the Hamiltonian H is bounded from below.

The description of the attitude dynamics (2.5) can be put into the port-controlled
Hamiltonian form, by creating the artificial one-dimensional output,

y = gT (ν, θ, ϕ, i)
∂H

∂x
. (2.13)

The output is characterized as artificial since it is not a quantity which can
be directly measured from the system. The output is formed by an assumed
complete state measurement, together with knowledge of the orbit position ν.
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2.2.2 Time-periodic systems

The TSS is described by a time-periodic system equation, the solutions of which
can be investigated using Floquet theory [16]. Floquet theory deals with the
solutions of linear systems with time-periodic system matrices,

ẋ = A(t)x, (2.14)

where A(t) = A(t + T ) and T is the period. One of the main results, re-
garding stability of the solution of (2.14), is the following relation between the
fundamental matrices Φ(t) and Φ(t+ T ),

Φ(t+ T ) = Φ(t)M . (2.15)

The matrix M is time-invariant and is called the monodromy matrix. The
stability of (2.14) can be investigated by considering the eigenvalues ofM , which
are called the characteristic multipliers of the system. The stability properties
of the system can be summarized as (see [61]):

• The system is unstable if one multiplier is placed outside the unit circle.

• The system is asymptotically stable if all multipliers are situated inside
the unit circle.

• The system is stable if non of the multipliers are placed outside the unit
circle and if the multipliers on the unit circle have multiplicity one.

Unfortunately, there is no general analytically method for finding the mon-
odromy matrix. A numerically solution is based on the fact that the fundamen-
tal matrix fulfills (2.14),

Φ̇ = A(t)Φ. (2.16)

Solving this system numerically with an initial condition of an identity matrix
Φ(0) = I, it is seen from (2.15) that the monodromy matrix can be found as
M = Φ(T ).

The stability of periodic solutions can be found by investigating the variational
equation, which is a dynamical equation for the deviation from the periodic
solution. This equation will be time-periodic, both in the case where a peri-
odic solution of an autonomous system is considered and in the case where the
periodic solution is enforced. Using the linear system,

ẋ = A(t)x+ b(t) (2.17)

as an example on the latter case, the deviation from the periodic solution xp

can be written as η = x− xp. Since both x and xp are solutions of (2.17) the
linear system describing η can be found as,

η̇ = A(t)η, (2.18)

which can be investigated using Floquet theory.
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2.3 Summary of papers

Paper A, Control by damping injection of electrodynamic tether system in an
inclined orbit. This paper treats the special case where the open-loop equilib-
rium of the TSS is stabilized. The work is based on the port-controlled Hamilto-
nian formulation (2.5) and uses the passive input-output connection introduced
in (2.13).

The control strategy simply connects the output to the input, using a negative
proportional gain. A prerequisite for this control strategy is that the system is
zero state detectable. To investigate if this is the case the zeros of the input
function are analyzed, since the input function is an important part of the
output, in the port-controlled Hamiltonian formulation. It is concluded that
both time, states, and orbit inclination induces zeros in the input function. The
zeros induced by time do not affect the zero state detectability, since they are
countable. The same conclusion is drawn regarding the zeros induced by the
states, based on the argumentation that the open-loop equilibrium is the only
equilibrium in the region of interest. The orbit inclination only induced zeros
for equatorial and polar orbits, these zeros will, however, prevent zero state
detectability and the control strategy would fail in these special cases. The
closed-loop system can be written as a Hamiltonian system with damping. Seen
in a PCH context the control strategy adds a damping matrix to the open-
loop formulation, hence the term damping injection is used to characterize the
strategy. Both the interconnection matrix and the Hamiltonian of the system
are unchanged by the feedback controller. The unchanged Hamiltonian shows
that the location of the equilibria of the system are unaffected by the controller,
hence only their stability properties are changed.

The performance of the controller is investigated by finding the characteristic
multipliers of the system. It is shown that there exists a finite controller gain,
which minimize the absolute value of the largest multiplier, and thereby leads to
the fastest convergence. The paper also includes some simulations of the closed-
loop system. The special cases of equatorial and polar orbits are briefly treated,
and it is shown that the stabilization fails in these case, due to unactuated
out-of-plane and in-plane dynamics.

Paper B, Stabilization of periodic solutions in a tethered satellite system by
damping injection. This paper investigates stabilization of the open-loop peri-
odic solutions of the TSS. The stabilizing control law is an expansion of the one
introduced in [A], and based on the same model. The control law is expanded
by a bias term, which drives the system trajectory away from the open-loop
equilibrium stabilized in [A].
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The motivation for the control law is found by considering the perturbation
method used to approximate the open-loop periodic solution. These are found
by perturbing the unforced system with a constant current, and in that way
drive the system trajectory away from the marginally stable equilibrium at the
origin. The periodic solutions can be seen as evolving from this equilibrium,
when the constant current is added. The periodic solutions are weekly unsta-
ble, i.e. marginally stable in a linear approximation, for small currents, and it
is observed that the change in stability during the evolution of the periodic
solutions only occur due to nonlinearities. One could expect that there is a con-
nection between the stability of the equilibrium the periodic solutions originate
from, and the stability of the solutions themself. This assumed connection is
the motivation behind the proposed control law.

Using Floquet theory, it is shown that the control law actually creates a family
of periodic solutions, which are asymptotically stable for some combinations of
control parameters. The magnitude of the stability deciding multiplier, i.e. the
numerically largest of the characteristic multipliers, are found in this parameter
plane to establish a region in which stable solutions exist. The shape of the
solutions is found using a perturbation method and through simulations. The
solutions are symmetric which is a property induced by the symmetry of the
dipole used to model the magnetic field. The investigation is concluded with
simulations, comparing the convergence of the system, with the characteristic
multipliers.

Paper C, Passivity-based control of a rigid electrodynamic tether. This paper
expands the investigation of the control laws introduced in [A] and [B].

The investigation of the control law, which stabilize the open-loop equilibrium,
is expanded by an analysis of the region of attraction (ROA) of the controller.
Using the fact that equilibrium positions have not been changed by the con-
troller and that the energy level is guaranteed not to increase, a ROA is stated
based on the Hamiltonian. Furthermore, a ROA based on simulations is found.
An additional analysis of the energy flow is also presented, based on the eigen-
values of the damping matrix and simulations. The analysis focuses on the
limitation of the energy flow and the conditions to be fulfilled for the energy to
flow out of the system. These conditions are connected to the zeros of the input
functions. Using simulations, it is investigated how the energy flow is affected
by perturbation in the magnetic field, or rather a mismatch between real field
and the model used in the control algorithm. The mismatch is introduced by
using a non-tilted and a tilted dipole, respectively, in the control algorithm and
the system model
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In connection with stabilization of periodic solutions the work is expanded with
an argument that a stabilization of an equilibrium point is not possible, when
only controlling the tether current, except in some special cases as for example
the open-loop equilibria. The argument is based on the feasibility of finding a
input signal that creates such general equilibrium points. The investigation of
the approximations of the periodic solutions is expanded with an analysis of the
accuracy of the approximations based on simulations of the nonlinear closed-
loop system. The stabilization of the periodic solutions is briefly investigated
when using a perturbed magnetic field. It is seen that, since the control uses no
information about the solution to stabilize, the solutions are governed by the
magnetic field and its periodic changes. It is demonstrated that the controller
can still stabilize a set of perturbed periodic solutions.
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Chapter 3

Tethered Satellite Formations

The research in the area of tethered satellite formations has mainly focused on
modeling the attitude motion of the system. The main objective is to obtain
a model describing several formation structures. This is achieved by using a
graph theoretical description of the formation, from which the Lagrangian of
the system is formulated. From the Lagrangian the equations of motion are
found using Lagrange’s equation. The modeling is treated in detail in Paper
D. Another objective is to investigate the use of electrodynamic tethers in
connection with formation control. To maintain the generic structure of the
system description, the modeling of the electrical circuit formed by the tethers
is also based on graph theory. The control of the generic formation is treated
in Paper E with the focus on obtaining a generic and decentralized control
algorithm. The control law is limited to consider the in-plane motion of the
system. This limitation is introduced to avoid an underactuated system, like
the single tether system.

3.1 Modeling

The modeling of tethered satellite formations aim to provide a model of the
basic dynamics of the formations, hence point masses are used to model the
satellites and the tethers are modeled as constant-length rigid rods. The motion
is described around the center of mass, which is assumed to follow a circular
orbit. The formations are modeled as a static formation, where the equilibrium
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positions are induced by the gravity gradient. The tethers are connected to
the satellites such that they can move on a sphere, i.e. the connections of the
tethers are modelled as spherical joints. The main assumption of the modeled
formations, is that they form tree structures. A tree structure is a structure not
containing cycles. This limitation simplifies the deduction of the equations of
motion since each tether can move freely around its connection point and the
degrees of freedom (DOF) of the model will be solely determined by the number
of tethers. Each tether will represent two DOF in the general case, and one
DOF in the case where only the in-plane motion is considered. In case cycles
were present in the formation, the equations of motion should be found taking
the algebraic constraint around each loop into account. These constraints are
basically describing that the net distance around a cycle must be zero. Seen
from a graph theoretical point of view the tree structure has the advantage that
the path along the tethers between two arbitrary satellites is unique. This is
utilized in the modeling.

3.1.1 Graph theory

Graph theory is a branch of mathematics used heavily in engineering and com-
puter science, and has found many different applications [6, 14]. In connection
with control theory it is often used to describe communication structures e.g. in
connection with multi-agent systems. The motivation of using graph theory
in connection with tethered satellite formations, is to describe the dynamics of
different formations using the same framework. Furthermore, there is a great
resemblance between a tethered formation and a graph. The satellites and teth-
ers can easily be seen as the nodes and edges in a corresponding graph, and it is
natural to utilize the mathematical formulation and theorems offered by graph
theory in the description and the modeling process of the formations. In this
work it has been advantageous to use directed graphs in the description.

A graph consists of a set of nodes or vertices vi for i = 1, . . . , n and a set of
edges ej for j = 1, . . . ,m. Each edge connects two and only two nodes. In case
a direction is associated with each edge, the graph is called a directed graph
and in this case initial and terminal nodes are introduced such that an edge ej
is directed from its initial to its terminal node. The topology of the graph can
be described by the incidence matrix B ∈ R

n×n, with the elements Bij defined
as,

Bij =





1 if vi is the initial node of ej

−1 if vi is the terminal node of ej

0 if ej is not incident with vi

(3.1)

The rank of the incidence matrix is r = n− c, where c is the number of disjoint
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components, i.e. groups of nodes and edges, in the graph. The number r is also
referred to as the rank of the graph. The nullity of B is b = m − r, which is
also the nullity of the graph. A path in a graph can be seen as an ordered set of
successive edges connecting two nodes, and the path can be assigned a direction
according to the ordering. The direction of the path does not necessarily agree
with the direction of the edges along the path, hence an edge can be included
in a path either along or opposite the direction of the path. A cycle in a graph
is a path of distinct edges from a node back to the same node. Like a path, a
cycle is assigned an orientation, and the edges can again be included along or
opposite the orientation of the cycle. The number of independent cycles in a
graph is determined by the nullity of the graph.

A connected graph without any cycles is called a tree or a directed tree in case
of a directed graph. The special case of a graph describing a tree structure has
been heavily used in this work, hence some of the properties of such a structure
will be mentioned here. The connection between the number of nodes and edges
in a tree structure is given as n = m+1, since a tree structure is assumed to be
connected. Consequently the rank of a tree is r = m and the nullity is b = 0,
which is in agreement with the assumed lack of cycles. A rooted tree is a tree
where there exist one and only one node not being the initial node of any edges.
This node is called the root of the tree. In case the direction of the edges can be
chosen freely, all nodes can constitute the root for a certain choice of directions.
A path between two nodes is unique in a tree structure. The path from the
nodes vi for i = 1, . . . ,m to the node vm+1 can be described by a single matrix
quantity P ∈ R

m×m called the path matrix. This path is described by the
elements Pji defined as,

Pji =





1 if ej is included along the direction of the path

−1 if ej is included opposite the direction of the path

0 if ej is not included in the path

(3.2)

The path matrix can be found with respect to an arbitrary node in the tree,
which is obvious since no specific ordering on the nodes is given. There is a
simple relation between the path matrix and the incidence matrix B. Consider
the incidence matrix where row k is omitted. This matrix A ∈ R

m×m called
the reduced incidence matrix is square due to the tree structure and has full
rank. The path matrix P with respect to the node vk can be written from the
reduced incidence matrix A with respect to the same node,

P = A−1. (3.3)
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3.1.2 Circuit theory

Besides using graph theory describing the formation structure, it is also applied
to describe the equivalent electrical circuit, formed by the electrodynamic teth-
ers. The basis for such description is briefly treated here, for circuits containing
only impedances and voltage sources. Further treatment is given in [6, Chap. 2].
In Paper E the framework is used for networks only containing resistances and
voltage sources, but expanded to consider nonlinear current-voltage relations.

The main idea in the modeling is to use a graph describing the interconnection
of electric elements. The nodes of the graph represents the junctions in the
electrical network and the edges represents the branches. The currents along
the branches are collected in a vector i ∈ R

m and are defined positive in the
direction of the edge representing the branch. The potential differences along
the branches are defined positive between the initial and the terminal node of
the edges representing the branch. This means that a positive current along a
resistor, will give rise to a positive voltage difference over the same resistor.
These potentials are collected in the vector v ∈ R

m. The impedances are
collected in the diagonal matrix Z ∈ R

m×m.

To be able to formulate Kirchhoff’s voltage law a description of the loops in the
network is needed. The loops of the electrical network equals the cycles of the
graph. These cycles are described by the matrix Q introduced with elements
Qkj ,

Qkj =





1 if ej is included in the cycle k along the orientation of the cycle

−1 if ej is included in the cycle k opposite the orientation of the cycle

0 if ej is not included in cycle k

(3.4)
A complete set of the linear independent cycles Q ∈ R

b×m can be found as the
null space of the incidence matrix,

BQT = 0n×b. (3.5)

Using the graph theoretical quantities, Kirchhoff’s current and voltage law can
be written as,

Bi = 0, (3.6a)

Qv = 0. (3.6b)

Furthermore, the potential differences along the branches can be written using
Ohm’s law,

v = Zi+ u, (3.7)
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where u is a vector of voltage sources along the branches. If there does not exist
a source along a branch the corresponding element of u vanishes. The current
along a branch can be seen as consisting of a current for each loop in which the
branch is included. This can be written as,

i = QT im, (3.8)

where im ∈ R
b is the loop currents. If a branch is only included in a single loop,

the loop current equals the current along the branch with sign determined by
the way the branch is included in the loop. Inserting this into (3.7), multiplying
from the left by Q, and using (3.6b) leads to the equation,

Zmim = um, (3.9)

where Zm = QZQT is the loop impedance and um = −Qu is the loop voltage
sources. This formulation is called the loop system formulation, since it is based
on the voltage differences around each loop in the network.

3.2 Summary of papers

Paper D, Modeling of tethered satellite formations using graph theory. This
paper investigates the unforced dynamics of the considered tethered satellite
formations. The derivation of the dynamics is based on the path matrix (3.2)
from which the positions and velocities of all the masses in the formation, relative
to the CM, can be written. Using the positions and velocities, the Lagrangian
can be written, including the kinetic energy and orbital energy. Since the system
is described in the moving orbit frame, the centrifugal and Coriolis potentials are
also included. From the Lagrangian the equations of motion can be found using
Lagrange’s equation, and the total system description is written in a matrix
formulation. An notable feature of the formulation is that all parameters and
the description of the formation structure are collected in a single matrix. The
derivation is treated in detail for the in-plane dynamics, while the equations of
motion for the combined in-plane and out-of-plane dynamics are stated in the
appendix. The derivations goes along the same steps, and only the degrees of
freedom and the complexity differ in the two cases.

Based on the equations of motion the stationary configurations situated in the
orbit plane are investigated. The configurations are found from a chosen set,
containing rods fixed in a vertical position, i.e. parallel to the gravity force.
Based on this set, a new graph is formed where the edges corresponding to the
vertically fixed rods are removed. By considering this new graph the equilibrium
position of the non-vertical rods can be determined. It is found that only the
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neighboring rods of the vertically fixed rod can have an inclined equilibrium
position, all remaining rods will have a horizontal equilibrium position. An
upper limit on the number of possible stationary configurations is found, based
on the number of different ways the set of vertical rods can be chosen.

Paper E, Decentralized control of tethered satellite formations using electro-
dynamic tethers. In this paper the use of electrodynamic tethers to actuate a
tethered satellite formation is proposed. To avoid an underactuated system the
investigation is limited to the in-plane motion. The paper expand the model
from [D] with a model of the electrodynamic forces occurring when currents are
lead through the tethers and interacts with the magnetic field. These currents
are controlled using adjustable voltage sources situated at the satellites, and
the modeling is based on an equivalent circuit described by graph theoretical
quantities. Due to the use of graph theory the generic structure of the dynam-
ical model is maintained when modeling the electrical circuit. The circuit is
closed through phantom loops in the ionosphere, meaning that the satellites are
capable of exchanging electrons with the ionosphere. These connections to the
ionosphere are modeled by equivalent resistances with nonlinear current-voltage
characteristics. The graph describing the circuit is a minor expansion of the
structure graph, since the resistance of the ionosphere can be ignored. Conse-
quently, the graph is expanded by a single node, such that the satellites and the
ionosphere constitute the junctions of the circuit.

The second part of the paper treats a decentralized control design for the system.
The control strategy is decentralized in the sense that each satellite applies the
control action based on local observations. The control law is found in two
steps. The first step stabilizes the tether currents at a desired level using the
voltage sources, and it is shown that the currents will converge asymptotically
towards this level. The second step is a linear feedback control law for the
attitude motion. The feedback gains are subject to some constraints, to ensure
that the control algorithm can be implemented in a decentralized way. Both
parts of the control law are based on the graph description of the system, hence
the resulting control strategy is generic for all formations included in the model
description. In particular the incidence matrix is used to transfer measurements
connected with the tethers to quantities associated with the satellites where the
control actions are applied. The paper is concluded by an example illustrating
the controller operating the system around one of the stationary configurations
found in [D].



Chapter 4

Conclusions and perspectives

This thesis have investigated the use of electrodynamic tethers in connection
with space missions. The emphasis has been on the modeling and control of the
attitude motion of such systems. The thesis considered single tether systems
and tethered satellite formations.

The control problem of a single tether system focused on the general case of
an inclined orbit. In this case the system was actuated through a time-periodic
input function. For this case the thesis described the system using an energy
function and utilized a passivity-based control strategy, first for stabilizing the
open-loop equilibrium, and second, for stabilizing periodic trajectories of the
system. The energy-based approach was shown to be advantageous in connec-
tion with handling the time-varying nature of the system, and for providing an
energy function which made basis for investigations of stability and regions of
attraction of the closed-loop system. The passivity-based control approach was
treated in the Papers A, B, and C.

The main objective of the work regarding tethered satellite formations was to
create a framework where several formation structures could be handled collec-
tively. This objective was reached by describing the topology of the formations
using graph theory, and utilizing this description in both the modeling and the
control design. The formations under consideration was limited to tree struc-
tures, and the satellites and tethers were modeled as point masses and massless
rods, respectively. The low level of detail made the model manageable and suit-
able for investigating basic properties, like natural frequencies and stationary
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configurations of the system. The model of the attitude motion was derived
in Paper D and the stationary configurations situated in the orbit plane were
found. In Paper E the use of electrodynamic tethers for actuating the attitude
motion was investigated, and a decentralized control design was developed based
on the graph theoretical description of the system. The actuation of the system
was based on an equivalent electric circuit of the network formed by the electro-
dynamic tethers. The design was able to stabilize the tethered formation and
handle nonlinearities in the equivalent resistance between plasma and electron
collectors/emitters of the system.

The main contribution of this thesis in the area of single tether system, was the
passivity-based approach to the control problem. This enabled a stabilization of
the open-loop equilibrium and a stabilization of periodic solution without any
reference or delayed feedback signals. In the area of tethered satellite formations
the main contributions were the use of graph theory to describe the formations
and the introduction of electrodynamic tethers for formation control.

There are several directions where the work presented in this thesis could be
expanded. The use of electrodynamic tethers will lead to changes in the orbit of
the system. These changes need to be explored when using the attitude control
strategy developed in this thesis. This is important both when using EDT’s for
orbit corrections and when using them to control the attitude motion. The use of
electrodynamic tethers as the sole control device of a spacecraft, introduce some
problems due to the limitations in the magnitude and direction of the control
action. The use of additional actuators in combination with electrodynamic
tethers are therefore an interesting research topic. Flexibility of the tethers
could also be taken into account and the first step would be to investigate and
further develop the control strategies to ensure that the tethers are in tension.

Seen in a larger perspective, the physical electrodynamic tether technology also
need further evolution. First of all additional missions are needed to obtain
more knowledge of the fundamental dynamical and electrical properties of the
system when in space. The exchange of electrons with the ionosphere need to
be further enhanced, in order to increase the collection of electrons to obtain
higher electric currents. This could potentially lead to the use of shorter tethers,
resulting in a reduced collision risk.
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Control by damping injection

of electrodynamic tether

system in an inclined orbit1

Abstract

Control of a satellite system with an electrodynamic tether as actuator is a time-
periodic and underactuated control problem. This paper considers the tethered
satellite in a Hamiltonian framework and determines a port-controlled Hamil-
tonian formulation that adequately describes the nonlinear dynamical system.
Based on this model, a nonlinear controller is designed that will make the sys-
tem asymptotically stable around its open-loop equilibrium. The control scheme
handles the time-varying nature of the system in a suitable manner resulting
in a large operational region. The performance of the closed loop system is
treated using Floquet theory, investigating the closed loop properties for their
dependency of the controller gain and orbit inclination.

1In proceedings of American Control Conference 2009.
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I Introduction

The principle of electrodynamic space tethers has been studied over the last
couple of decades for its potential of providing cheap propulsion for spacecrafts
(see [1] for the fundamentals and [2] for a survey of the literature). A tethered
satellite system (TSS) consists of two or more spacecrafts tethered with cables,
also known as space tethers. The current study will consider two satellites
tethered with an electrodynamic tether. An electrodynamic tether is able to
collect and release free electrons from/to the ionosphere, which makes a current
flow along the tether. The current will interact with the magnetic field of the
Earth and give rise to a Lorentz force acting along the tether. This force can
be utilized to perform orbit maneuvers.

In this work a rigid tether model has been adopted and it is assumed that the
current through the tether can be controlled without limitation. In general the
model is time-varying, due to the periodic changes in the magnetic field along
the orbit. This time-periodic nature gives rise to a family of unstable periodic
solutions, which have been investigated in [3]. The special case of an equatorial
orbit, which has the advantage of being time invariant, was investigated in [4].

In this paper, the focus will be on the case of an inclined orbit, which has been
investigated by several others. One proposed control strategy is to stabilize the
unstable periodic solution of the tether motion. In [5] two control schemes were
proposed for such stabilization using two additional actuators. The first scheme
used linear feedback of the difference between a reference trajectory and the
current trajectory, the other used time-delayed autosynchronization. In [6], the
unstable periodic solutions were stabilized using a current through the tether as
actuator. The feedback law was designed using the energy variation along the
orbit to synchronize the motion with a reference trajectory. In [7], a feedback
linearisation control law was designed, using the current through the tether and
the tether length as control inputs, to stabilize the open-loop equilibrium. This
feedback law introduced two singularities along the orbit due to the unactuated
out-of-plane dynamics, which was handled by switching to an additional control
law.

The main contribution of this paper is to formulate the systems as a port-
controlled Hamiltonian system to establish a passive connection between input
and an output from which an asymptotically stable control law is designed to
stabilize the open-loop equilibrium. From the port-controlled Hamiltonian for-
mulation the controller is interpreted as damping injection for the conservative
open-loop system. Traditionally the zeros of the input function can give rise
to problems in connection with the control law (see [7]). However the paper
shows that these are easily handled together with the time-varying nature of
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the actuator due to the passive system formulation. The idea of using an en-
ergy based control method for the tether system is shown to be a natural choice
since the dominating force on the system is the conservative gravity force and
the perturbation force can be determined by the control input.

II Model

In this section the tether model is deduced. The physical setup is first intro-
duced. In the following sections the Lagrangian and the Hamiltonian of the
system are stated and the generalized force arising from the Lorentz force will
be derived. In the last section the system will be formulated as a port-controlled
Hamiltonian system.

a) Definitions and assumptions

The TSS under consideration consist of two satellites, the main-satellite and
the sub-satellite, tethered with a rigid electrodynamic tether of length l and
mass mt. The satellites are modelled as point masses with mass mB and mA,
respectively. The mass of the main-satellite is assumed the dominating mass
of the system, mB ≫ mA +mt, from which it can be assumed that the center
of mass of the TSS coincides with the center of mass of the main-satellite. It
is assumed that the satellites are only subject to microgravity, while the tether
in addition is affected by the Lorentz force. Since no perturbation forces are
affecting the main-satellite, it will follow a unperturbed Keplerian orbit, which
furthermore is assumed circular with semi-major axis Ro. The model is derived
with the purpose of investigating the stability of the tether w.r.t. the orbital
motion, thus it will only consider the influence of the Lorentz force on the
attitude motion. The effect of the on the orbital motion was the subject of
[8]. The motion of the tether is described in the orbit frame, defined with the
xo-axis along the position vector from the Earth to the main-satellite, yo along
the velocity vector of the system and zo normal to the orbit plane (see Fig. 1).
Since the orbit is assumed circular the right ascension of the ascending node Ω,
the orbit inclination i and the true anomaly ν will be adequate to describe the
orbit frame w.r.t. to the inertia frame as seen in Fig. 1. The points along the
tether are described using a unit vector r from the main- to the sub-satellite,
from which the points along the tether can be written as sr with s ∈ [0 l]. The
tether is assumed of constant length, hence the tether motion is restricted to
a sphere and the system has n = 2 degrees of freedom. Spherical coordinates
are introduced as the generalized coordinates q = [θ ϕ]T , from which r can be
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Figure 1: Orbit description. The orbit frame (xo,yo, zo) occurs from an Ω →
i → ν rotation of the inertial frame (X,Y ,Z).
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zo

θ

ϕ

Orbit trajector
y

Figure 2: In- and out-of-plane angles described w.r.t. the orbit frame
(xo,yo, zo).

expressed in the orbit frame as,

r =
[
− cos θ cosϕ − sin θ cosϕ − sinϕ

]T
, (1)

where θ is the in-plane angle and ϕ the out-of-plane angle as seen in Fig. 2. The
position of the main-satellite in the orbit is described by the true anomaly ν.
The orbit is assumed circular thus ν is linearly increasing and it is evident to
introduce ν as the non-dimensional time ν = ωot, which is subsequently used in
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the model. The current I through the tether is seen as the control input and
it is assumed to be controlled without limitations. When the tether is the only
actuator the system is underactuated i.e. the number of inputs m is smaller than
the degrees of freedom n.

b) Lagrangian

The Lagrangian of the system can be written as the difference between kinetic
and potential energy,

L = K − V. (2)

From the Lagrangian the equation of motion can be found from Lagrange’s
equation. Defining the Jacobian of a scalar function as a column vector this can
be written as,

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= τ , (3)

where τ = [τθ τϕ]
T represents the generalized force acting on the system. Since

the motion relative to the orbit frame is of interest, the velocities are described
relative to this frame, which introduces the centrifugal and the Coriolis potential.
Since the system is orbiting the Earth the main effect of the gravitational field
vanishes and V includes only the Tidal force. The Lagrangian L can be written
(see e.g. [3]),

L(q, q̇) =
1

2
Λ
(
ϕ̇2 + cos2 ϕ

(
(1 + θ̇)2 + 3 cos2 θ

))
, (4)

where (˙) denotes differentiation w.r.t. ν and Λ = 1
3ω

2
ol

2(3mA +mt). The term

2θ̇ cos2 ϕ represents the Coriolis potential and cos2 ϕ the centrifugal potential.
From (3) it is seen that τ can be scaled by Λ−1, which leaves a parameterless
Lagrangian.

c) Hamiltonian

The generalized momenta can be found as p = ∂L
∂q̇ = [pθ pϕ]

T from which,

pθ =
(
1 + θ̇

)
cos2 ϕ (5a)

pϕ = ϕ̇. (5b)
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The Hamiltonian H is given as,

H(q,p) = pT q̇ − L (q, q̇ (p, q)) (6)

=
1

2

(
p2ϕ +

p2θ
cos2 ϕ

− 2pθ − 3 cos2 θ cos2 ϕ

)
+ 2. (7)

The constant 2 is added, without loss of generality, to get a positive semi definite
Hamiltonian. The singularities at ϕ = ±π

2 are coursed by the use of spherical
coordinates. Using H the equation of motion can be written using Hamilton’s
equation,

q̇ =
∂H

∂p
, (8a)

ṗ = −∂H

∂q
+Q, (8b)

where Q = Λ−1τ . The equations result in the following four coupled first order
differential equations,

θ̇ =
pθ

cos2 ϕ
− 1, (9a)

ϕ̇ = pϕ, (9b)

ṗθ = −3

2
cos2 ϕ sin 2θ + τθ, (9c)

ṗϕ = − p2θ
cos2 ϕ

tanϕ− 3

2
cos2 θ sin 2ϕ+ τϕ. (9d)

From Hamilton’s equation (9) it is obvious that the equilibria of the unforced
system (Q = 0) is placed at the extrema of H . The open-loop equilibrium
between the Earth and the main-satellite is described as p∗θ = 1 and p∗ϕ = θ∗ =
ϕ∗ = 0.

d) Generalized forces

The Lorentz force on a tether section of unit length is,

F̄e = Ir ×B, (10)

where B is the magnetic field of the Earth. To find the generalized force τ
associated with the generalized coordinates, the Lorentz force per unit length is
projected onto the generalized coordinates and integrated along the tether,

τi =

∫ l

0

F̄e ·
∂ (sr)

∂qi
ds, for i = 1, 2. (11)
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A dipole model is a simple and widely used approximation of the magnetic field
of the Earth. To avoid unnecessary complexity, the dipole moment is aligned
with the rotational axis of the Earth. This results in a model independent of
the rotation of the Earth. The B-field can be written in the orbit frame as,

B =
µm

R3
o



−2 sin ν sin i
cos ν sin i

cos i


 , (12)

where µm is the strength of the B-field. Using (12) the generalized force is,

Q = b(q, ν)u, (13)

where u is a dimensionless quantity proportional to the input current, which in
turn can be written as,

u =
3

2

1

3mA +mt

µm

µ
I. (14)

Here µ is the standard gravitational parameter of the Earth. The vector b(q, ν) =
[bθ(q, ν) bϕ(q, ν)]

T will be denoted as the input function and is of great impor-
tance for the control design. It is essential for the controllability of the system
and it will appear to be an important part of establishing a passive input-output
connection for the system.

The input function can be written as,

bθ(q, ν) = cos2 ϕ tanϕ sin i (cos ν sin θ − 2 sin ν cos θ)− cos2 ϕ cos i, (15a)

bϕ(q, ν) = sin i (cos θ cos ν + 2 sin θ sin ν) . (15b)

b(q, ν) is in general quite complicated reflecting the fact that the magnetic field
varies along the orbit (from which the time dependency occurs) and that the
Lorentz force depends upon the tether orientation relative to the B-field. In
the special case of an equatorial orbit (i = 0◦) the input function becomes
time invariant, but at the same time bϕ vanish and the out-of-plane motion will
become unactuated. This case was treated in [4].

In the case of an inclined orbit bϕ(q, ν) will have two zeros along the orbit,
determined by 2 tan θ = − cot ν. For the open-loop equilibrium these are placed
at ν = ±π

2 . The zeros of bθ(q, ν) occurs in a more complicated scheme. It can
be seen from (15a) that for non-polar orbits (i 6= 90◦) zeros cannot occur for
small out-of-plane angels (more specifically for 2 |tanϕ| < |cot i|), hence no zeros
occur for the open-loop equilibrium or any other equilibrium in the orbit plane.
For a polar orbit, bθ vanish if sin 2ϕ = 0 or cot ν = 2 cos θ, i.e. the in-plane
motion is unactuated at the open-loop equilibrium.

A critical situation where the system is uncontrollable can occur if bθ = bϕ = 0
for a period of time. This situation will occur if the tether and the magnetic
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field are parallel, and no Lorentz force can be generated along the tether. We
will not treat this situation in this work.

e) Port-controlled Hamiltonian system description

Introducing a state vector x =
[
qT pT

]T
the system is rewritten as,

ẋ = J
∂H

∂x
+ g(x, ν)u (16a)

y = gT (x, ν)
∂H

∂x
, (16b)

where

J =

[
0 I

−I 0

]
and g =

[
0

b(q, ν)

]
. (17)

This is a standard formulation of a mechanical system where only the momen-
tum states are actuated. The output function (16b) is chosen to establish a
passive input output connection. This formulation is called a port-controlled
Hamiltonian description (see [9, p. 73]) and can, for single input systems, in
general be written as,

ẋ = (J(x, ν)−R(x, ν))
∂H

∂x
+ g(x, ν)u (18a)

y = gT (x, ν)
∂H

∂x
, (18b)

where J ∈ R
2n×2n is the interconnection matrix andR ∈ R

2n×2n is the damping
matrix. It is assumed that the interconnection matrix is skew-symmetric J =
−JT and that the damping matrix is symmetric and positive semi-definite,
R = RT ≥ 0. Both the interconnection and the damping matrices can be state
and time dependent. In the current case R = 0 for the open-loop system since
no damping forces are modelled.

III Control Design

A controller based on the passivity property of the port-controlled Hamiltonian
system will be designed in this section. Afterwards, the closed loop system will
be investigated, using linear Floquet analysis, to find a controller gain k, which
provides optimal stability properties.
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a) Passivity based control design

A general stabilization of the system is a difficult task due to its time-varying
and underactuated nature. In the port controlled Hamiltonian framework, this
would require a feedback law, which reshapes the Hamiltonian of the closed loop
system. An easier task would be to stabilize the open-loop equilibrium x∗. The
latter will be considered here. Since the Hamiltonian (which acts as storage
function for the system) is positive definite, this task can be simply achieved
by the feedback law u = −ky, where k > 0 (see [9, Corollary 3.3.1 p. 44]). An
important condition for the control design is then that the system need be zero-
state detectable, i.e. if u = y = 0 for t > t0 the states should converge towards
the equilibrium. The zero-state detectability of the system is closely related to
the zeros of the input function.

The output can be written as,

y = gT (x, ν)
∂H

∂x
= bT (q, ν)

∂H

∂p

= bθ(q, ν)θ̇ + bϕ(q, ν)ϕ̇, (19)

where it has been used that q̇ = ∂H
∂p . The zeros of the input function originating

from time-periodicity have no influence on the zero-state detectability since they
will be countable. The generalized coordinates can induce zeros in the input
function as mentioned earlier, but in the case, where the generalized velocities
are different from zero, they will only occur for countable instances of time. The
case where the velocity is also zero, the state will have reached the equilibrium
of interest, since this is the only open-loop equilibrium. The last variable to
cause zeros in the input function is the orbit inclination i. In the case of a
equatorial orbit (i = 0◦) the second term of the output will be zero. If the in-
plane dynamics at the same time has reached its equilibrium, the out-of-plane
dynamics will by unobservable from the output and the system is therefore not
zero-state detectable in this case. For a polar orbit (i = 90◦) the situation is
similar. The in-plane dynamics will be unobservable from the output in the case
where the out-of-plane dynamics have reached its equilibrium position, hence
the system is not zero-state detectable in the case of a polar orbit neither.

The stability of the closed loop system can by investigated using H as Lyapunov
function candidate. The time derivative of H is,

Ḣ =

(
∂H

∂x

)T

J
∂H

∂x
+

(
∂H

∂x

)T

g(x, ν)u

= −k

(
∂H

∂p

)T

b(q, ν)bT (q, ν)
∂H

∂p
. (20)
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Due to the zero-state detectability, the derivative of this Lyapunov candidate
is negative semi-definite, however LaSalle’s theorem ensures asymptotically sta-
bility of x∗.

The closed loop system can be written as a port-controlled Hamiltonian system
as,

ẋ = (J −R)
∂H

∂x
, (21)

where

R = ggT =

[
0 0

0 R2

]
. (22)

It is seen that the controller has added the damping matrix R2 = bbT , hence
the controller strategy is called damping injection. R2 will have one eigenvalue
equal to zero, while the other will be positive except when bθ = bϕ = 0 in which
case it will be zero. The lack of full rank of R2 is a consequence of the fact that
the system is underactuated.

b) Closed loop analysis

This section investigates the stability properties of the closed loop system, for
different values of k, using Floquet analysis. A linearised version of the closed
loop system can be written as,

ẋ = A(ν)x, (23)

where A(ν) is the T = 2π-periodic system matrix,

A(ν) =




0 0 1 0
0 0 0 1
−3 0 0 0
0 −4 0 0




− 1

2
k




0 0 0 0
0 0 0 0
0 0 2 cos2 i − sin (2i) cos ν
0 0 − sin (2i) cos ν 2 sin2 i cos2 ν


 . (24)

The independent solutions of (23) can be written in a fundamental matrix Φ(ν)
for which,

Φ̇(ν) = A(ν)Φ(ν). (25)

It is seen that Φ(ν + T ) is also a fundamental matrix, hence the connection
between Φ(ν) and Φ(ν + T ) can be written,

Φ(ν + T ) = Φ(ν)M , (26)
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where M is the nonsingular monodromy matrix and the characteristic multi-
pliers ρi can be found as the eigenvalues of M . The stability of the system is
determined from ρi (see [10]) and can be summarized as,

• If one characteristic multiplier is numerically lager than one |ρi| > 1, the
system is unstable.

• If all characteristic multipliers are numerically less than one |ρi| < 1, the
system is asymptotically stable.

• If the multipliers of unit length (|ρi| = 1) have equal algebraic and geomet-
rical multiplicity and the remaining multipliers have |ρi| < 1 a periodic
solution exist.

The general complex solution of (23) can, in the case where an eigenvalue of
multiplicity m has m independent eigenvectors, be written as,

x(ν) =

2n∑

i=1

ciρ
ν
T

i pi(ν), (27)

where pi is a T -periodic function and ci is a constant. From (27) it is clear the
numerically largest multiplier will dominate the response as well as decide the
stability (in agreement of the above scheme). This multiplier will determine the
convergence of the solution. We will denote the numerically largest characteristic
multiplier the stability deciding multiplier. In this work the characteristic multi-
pliers are found numerically by solving (25) with the initial condition Φ(0) = I.
The monodromy matrix can then by found from (26) as M = Φ(T ).

Fig. 3 shows the evolution of the characteristic multipliers in the complex plane
for increasing controller gain. The absolute values are shown in Fig. 4. The
inclination is i = 45◦ in this case. For k = 0 the figures show that two periodic
solutions exist with different frequencies corresponding to the natural frequen-
cies of the in- and out-of-plane motions1. The in-plane motion has a natural
frequency of

√
3ωo corresponding to ρ1 and ρ2 while the out-of-plane natural

frequency equals 2ωo corresponding to ρ3 and ρ4. ρ3 = ρ4 = 1 since the out-of-
plane natural frequency is a multiple of the orbit rate, which corresponds to the
frequency of the time variation of A (ν). For increasing k the multipliers are
moving towards the origin, reaching a minimum of the absolute value at k ≈ 3.
Afterwards three multipliers converge to one, while the last one converges to
zero, resulting in an increasing stability deciding multiplier. It is seen that the
system is asymptotically stable for all k 6= 0, which is in agreement with the sta-
bility proof of the previous section. Fig. 5 shows three simulations of the closed

1In the case k = 0 the eigenvalues can be found analytically and it can be checked the that

geometric multiplicity of ρ3 and ρ4 equals two.
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Figure 3: The characteristic multipliers shown in the complex plane. k = 0 is
marked with ◦ and k = 100 is marked with ×.
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Figure 4: The absolute value of the characteristic multipliers as function of
the controller gain k.

loop system for different controller gains. The gains are chosen to illustrate the
influence of the deciding multiplier on the system response.
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Figure 5: Simulation of nonlinear closed loop system for different gains k.

Due to the zeros of the input function the controller will only be stable in a cer-
tain range of orbit inclinations. Fig. 6 shows the stability deciding characteristic
multiplier as function of the controller gain for different inclinations. In case of
either an equatorial or a polar orbit, the characteristic multiplier is one for all
k, and periodic solutions will occur. This is in agreement with the analysis of
the zero-state detectability from the previous section. As already mentioned,
the out-of-plane motion is unactuated in the equatorial case since bϕ = 0, hence
in the linear approach, the out-of-plane motion will oscillate with its natural
frequency. For polar orbits bθ vanished in the linear approach, hence the mo-
tion is unactuated and similar to the equatorial orbit, the in-plane motion will
oscillate with its natural frequency.

Fig. 7 shows simulation of the closed loop system for different inclinations. The
figure shows that for the equatorial orbit the out-of-plane motion is poorly
damped, while the in-plane motion is poorly damped for the polar orbit.
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Figure 6: The absolute value of the deciding multiplier for different i.
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Figure 7: Simulation of nonlinear closed loop system for different orbit incli-
nation i. The controller gain is chosen as k = 3.
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IV Discussion

The controller designed in this paper has distinct advantages to other ap-
proaches. With this approach, the zeros of the input functions are not leading
to singularities in the control law, which in turn gives to a large operational
region. The approach is balancing the trade-off between performance and ro-
bustness in favour of the robustness of the control. This is a known property
of a passivity based control design (see [11]). Robustness is quite important in
a practical context, since the uncertainty in the magnetic field is quite large.
The performance is limited by the minimum of the stability deciding multiplier,
which lead to slow control action compared to other approaches.

Earlier papers have emphasized that the current which can be induced along the
tether is limited (see e.g. [6]). This can prevent the choice of an optimal control
gain, which will lead to a longer settling time for the controller However, it will
not have any influence on the stability of the controller.

V Conclusion

A controller that provides asymptotically stability for the open-loop equilibrium
of a tethered satellite system was designed in this paper, using an electrodynamic
tether as actuator. The design was based on a port-controlled Hamiltonian for-
mulation of the system and stability was shown using the Hamiltonian as a
Lyapunov function. The performance of the closed loop system was investi-
gated using Floquet theory and a controller gain was found that minimize the
settling time. The performance was investigated, primarily as a function of orbit
inclination. As a salient feature, it was shown that damping was injected for
all values of inclination, except when pure equatorial or polar orbits were con-
sidered. These orbits lead to nonactuated out-of-plane and in-plane dynamics,
respectively, as should be expected.
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[3] J. Peláez, E. C. Lorenzini, O. López-Rebollal, and M. Ruiz. A new kind of
dynamic instability in electrodynamic tethers. Journal of the Astronautical
Sciences, 48(4):449–476, 2000.

[4] M. B. Larsen and M. Blanke. Nonlinear control of electrodynamic tether in
equatorial or somewhat inclined orbits. In Proc. Mediterranean Conference
on Control & Automation MED ’07, pages 1–6, 2007.
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Stabilization of periodic

solutions in a tethered

satellite system by damping

injection1

Abstract

A spacecraft with electrodynamic tether orbiting the Earth will be subject to
a periodic forcing term induced by the variation of the magnetic field along the
orbit. The periodic forcing term leads to a family of unstable periodic solutions
for a tether carrying a constant current. This paper presents a control design
for stabilizing these periodic solutions. The design consists of a control law for
stabilizing the open-loop equilibrium and a bias term which forces the system
trajectory away from the equilibrium. The tether needs to be positioned away
from open-loop equilibrium for the tether to affect the orbit parameters. An
approximation of the periodic solutions of the closed loop system is found as
a series expansion in the parameter plane spanned by the controller gain and
the bias term. The stability of the solutions is investigated using linear Floquet
analysis of the variational equation and the region of stable periodic solutions
in the parameter plane is found.

1In proceedings of European Control Conference 2009.
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I Introduction

An electrodynamic tether is an actuator for performing orbit maneuvers of satel-
lites or spacecrafts in general, mainly proposed for deorbiting of obsoleted satel-
lites. The actuator consists of a conducting wire connecting a sub-satellite to a
main-satellite. Assuming the system is orbiting an environment with a magnetic
field and free electrons (e.g. the ionosphere of a low Earth orbit), the magnetic
field will induce a voltage along the tether and by collecting and emitting elec-
trons from/to the environment a current will flow through the tether. The
current will interact with the magnetic field and give rise to an electrodynamic
force (the Lorentz force) acting on the tether. This force can be utilized to per-
form orbit maneuvers. See [1] for a basic mathematical treatment of the system
and [2] for a survey of the literature.

In this paper the tether will be modelled as a rigid rod. For modelling the mag-
netic field of the Earth a dipole model with dipole moment along the rotational
axis of the Earth is adopted. The tether motion is described with respect to
the main-satellite, which makes the model useful for investigating the local sta-
bility of the tether system. The variation in the magnetic field along the orbit
introduces time-variations in the model. Using the tether as the only actuator
of the satellite, makes the system underactuated.

This type of model has been used in several articles both for investigating the
stability of the tether system relative to the orbit and for control design. In
[3] it was shown that the tethered satellite system contained a family of unsta-
ble periodic solutions when a constant current is applied through the tether.
The periodic solutions occur from a periodic forcing term originating from the
variations in the magnetic field. The time-varying and underactuated nature
of the system makes it a difficult task to design stabilizing controllers for the
system. The time-invariant special case of an equatorial orbit was addressed in
[4], while stabilization of the origin in the time-varying case was treated in [5]
and [6]. Another control strategy for the system is to stabilize the known un-
stable periodic solutions. This control strategy has been investigated in several
papers and is also the subject of the present paper. In [7] two different control
schemes was investigated using the difference between the open-loop periodic
solution and the current trajectory as feedback signals. A linear feedback con-
troller and a time-delayed autosynchronization controller was investigated. The
control forces were assumed generated by some additional actuators. In [8] the
energy variations along a unstable periodic solution was used to synchronize the
system trajectory with the periodic solution.

The control design presented in this paper is based on [6] where the origin of the
open-loop system was stabilized by use of damping injection. In this paper the
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design is extended to create stable periodic solutions of the tether motion. The
control design has the advantage compared to other designs that no reference
solution is used, i.e. knowledge of the unstable open-loop periodic solution is not
necessary. The price of this feature is that the shape of the orbit is perturbed
compared to the open-loop solution.

The first section of the paper contains a brief review of the system model, while
the second section will deduce the control design. The third section contain an
analysis of the closed loop system, including an approximation of the periodic
solutions and an investigation of their stability.

II Model

The model derived in this section will describe the tether motion relative to
the orbit frame, i.e. the attitude motion of the system. For a more elaborate
derivation see [3] or [6]. It is assumed that a rigid tether of massmt connects two
satellites, a main-satellite and a sub-satellite of mass mB and mA, respectively.
Both satellites are modelled as point masses. It is assumed that the main-
satellite follows an unperturbed Keplerian orbit, i.e. that the center of mass of
the system is placed at the main-satellite. For simplicity the orbit is assumed
circular with orbit rate ωo. We will defined the orbit frame with the xo-axis
along the position vector of the main-satellite relative to the center of the Earth.
The yo-axis defines the velocity of the satellite and the zo-axis the normal to
the orbit plane. In this coordinate system the open-loop system will have two
stable equilibria, one on the positive part and one on the negative part of the
xo-axis. Similar there will be two unstable equilibria along the yo-axis. We will
consider a tether system operating around the equilibrium on the negative part
of the xo-axis. The tether is assumed of constant length l, hence the motion is
restricted to a sphere. This makes it natural to introduce spherical coordinates
q = [θ ϕ]T to describe the n = 2 degrees of freedom. The in-plane angle θ will
be defined as the angle in the orbit plane measured from the negative part of
the xo-axis and the out-of-plane angle ϕ is the angle out of the orbit plane, (see
Fig. 1). Using the generalized coordinates a unit vector along the tether can be
written as,

r =
[
− cos θ cosϕ − sin θ cosϕ − sinϕ

]T
. (1)

With the assumption of a circular orbit it is natural to introduce the true
anomaly ν as the (dimensionless) time variable of the model. This corresponds
to scaling the time by the orbit rate, ν = ωot.
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Figure 1: In- and out-of-plane angles described w.r.t. the orbit frame
(xo,yo, zo).

a) Energy functions

The Lagrangian of the system can be written as (see e.g. [3]),

L(q, q̇) =
1

2
Λ
(
ϕ̇2 + cos2 ϕ

(
(1 + θ̇)2 + 3 cos2 θ

))
, (2)

where (˙) denotes differentiation w.r.t. ν and Λ is a constant determined from
the mass and the orbit rate of the system as Λ = 1

3ω
2
ol

2(3mA + mt). The

kinetic energy is included in the terms θ̇2 cos2 ϕ and ϕ̇2, while the potential
originating from the tidal force is represented by 3 cos2 θ cos2 ϕ. The terms cos2 ϕ
and 2θ̇ cos2 ϕ includes the centrifugal and the Coriolis potential, respectively.
Introducing the generalized momenta p = [pθ pϕ] as,

pθ =
θ̇

cos2 ϕ
− 1, (3a)

pϕ = ϕ̇, (3b)

the Hamiltonian of the system can be written as,

H(q,p) =
1

2

(
p2ϕ +

p2θ
cos2 ϕ

− 2pθ − 3 cos2 θ cos2 ϕ

)
+ 2. (4)

The constant Λ has been left out, which corresponds to scaling the Hamiltonian
with this quantity. This can be done remembering to scale the generalized
force with Λ−1. A constant has been added to the Hamiltonian without loss
of generality to obtain a positive definite function. Using the Hamiltonian the
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equation of motion can be written using Hamilton’s equation,

q̇ =
∂H

∂p
, (5a)

ṗ = −∂H

∂q
+ τ , (5b)

where τ is the (scaled) generalized force. We will define the Jacobians of the
Hamiltonian as column vectors.

b) Generalized force

The system is actuated by leading a current I through the tether. The Lorentz
force per unit length tether induced by the current can be written as,

F̄e = Ir ×B, (6)

where B is the magnetic field of the Earth. The total generalized force can be
found by projecting the force onto the generalized coordinates and integrating
along the tether. By describing the points along the tether as r̄ = sr for s ∈ [0 l]

the generalized force τ = [τθ τϕ]
T
can be written,

τθ =

∫ l

0

F̄e ·
∂r̄

∂θ
ds, (7a)

τϕ =

∫ l

0

F̄e ·
∂r̄

∂ϕ
ds. (7b)

A common way to model the magnetic field of the Earth is to use a dipole model
with dipole moment along the rotational axis of the Earth. One advantage of
this model is that it is independent of the rotation of the Earth. Along a circular
orbit the magnetic field from such a dipole can be described in the local frame
as,

B =
µm

R3
o

[
−2 sin ν sin i cos ν sin i cos i

]T
, (8)

where µm is the strength of the dipole and Ro is the radius of the orbit. The
orbit inclination i describes how much the orbit plane is tilted compared to the
equatorial plane of the Earth. It is assumed that the magnetic field do not vary
along the length of the tether. Inserting the B-field in (6) and (7) the generalized
force can be written in the affine form,

τ = b(q, ν)u, (9)

where u is a dimensionless quantity proportional to the input current,

u =
3

2

1

3mA +mt

µm

µ
I. (10)
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The proportionality constant is merged by the constant terms from the La-
grangian, the B-field and the projection of the Lorentz force. For simplicity
u will be used as control input to the system. The input function b(ν, q) =
[bθ(ν, q) bϕ(ν, q)]

T can be written as,

bθ =cos2 ϕ tanϕ sin i (cos ν sin θ − 2 sin ν cos θ)− cos2 ϕ cos i, (11a)

bϕ =sin i (cos θ cos ν + 2 sin θ sin ν) . (11b)

In the case of an equatorial orbit (i = 0◦) the input function will be time
invariant, for all other cases the input function is time-periodic. This periodicity
is induced by the variations of the magnetic field along the orbit. For a constant
input u the input function will act as a periodic forcing term in which case a
family of periodic solutions occur. In [3] these solutions was investigated and
found to be unstable. The total system description can be written as,

q̇ =
∂H

∂p
, (12a)

ṗ = −∂H

∂q
+ b(ν, q)u. (12b)

Introducing the state vector x =
[
qT pT

]T
the equation can be written in the

compact form,

ẋ = J
∂H

∂x
+ g(ν, q)u, (13)

where the matrix J is defined using n× n unit matrices I,

J =

[
0 I

−I 0

]
. (14)

The input function can be written as,

g(ν, q) =

[
0

b(ν, q)

]
. (15)

III Control Design

The Lorentz force used to perform orbit maneuvers with the tether system is
only generated for an input current different from zero u 6= 0, which will destroy
the open-loop equilibrium. Ideally the control objective for the system should
be to stabilize the tether away from the open-loop equilibrium. This is, however,
a hard task due to the time-periodic and underactuated nature of the system.
Instead one could try to stabilize the periodic solutions of the system.
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The present control design used to stabilize the periodic solutions is based on
the design presented in [6] for stabilizing the open-loop equilibrium. The first
step in the design is to define an output for the system as,

y = bT (ν, q)
∂H

∂p
= bθθ̇ + bϕϕ̇. (16)

Note that from Hamilton’s equation (5) the partial derivative ∂H
∂p is seen to be

the generalized velocity q̇. The output is chosen to establish a passive input-
output connection from which a stabilizing control can be designed as u = −ky,
k > 0 (see [9]). The resulting closed loop system becomes,

ẋ = (J − kR)
∂H

∂x
, (17)

where R is the positive semidefinite matrix,

R =

[
0 0

0 R2

]
, R2 =

[
b2θ bθbϕ

bθbϕ b2ϕ

]
. (18)

Using H as a positive definite Lyapunov candidate the time derivative is,

Ḣ =

(
∂H

∂x

)T

(J − kR)
∂H

∂x

= −k

(
∂H

∂p

)T

R2
∂H

∂p
. (19)

From (19) and LaSalle’s theorem [10, Theorem 4.4, p. 128] asymptotically sta-
bility can be stated for the origin of the closed loop system. Since the feedback
connection is adding damping to the open-loop system the term −ky will be
referred to as damping injecting. To force the trajectory away from the open-
loop equilibrium a bias term v is added to the control law to obtain the final
feedback connection,

u = −ky + v. (20)

The idea is to investigate the effect that damping injection will have on the
already known unstable periodic solutions.

The control law will, as we will see in the next section, stabilize a family of
periodic solutions. This family can be seen as the family found in [3] perturbed
by the controller gain k. The control law is simple compared to some of the
other approached know to the authors, mainly since the approach does not need
a reference trajectory of the orbit which is intended to be stabilized. One can
argue that the stabilized periodic solutions is in fact another family of solutions
compared to the open-loop solutions.
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IV Closed Loop Analysis

In this section the closed loop system will be investigated using mainly numerical
tools. All the numerical investigations of the system are carried out using an
orbit inclination of i = 45◦.

a) Series approximation of the periodic solutions

A common way to find periodic solutions in dynamical systems is to use a
perturbation method called the Poincaré-Lindstedt method (see [11, Chap. 7]).
Assuming that we know a solution for a certain parameter value ε0 the basic
idea is to expand the solution using a power series in terms of this parameters,
obtaining solutions valid for small parameter variations of ε. For simplicity and
without loss of generality we can assume that ε0 = 0. To illustrate the method
we consider a forced linear system,

ẋ(t, ε) = A(t, ε)x(t, ε) + b(t, ε), (21)

where A and b are periodic in t. The solution x(t, ε), the system matrix A(t, ε)
and the forcing term b(t, ε) can be written as power series of ε,

x(t, ε) = x0(t) + εx1(t) + ε2x2(t) + . . . (22a)

A(t, ε) = A0(t) + εA1(t) + ε2A2(t) + . . . (22b)

b(t, ε) = b0(t) + εb1(t) + ε2b2(t) + . . . (22c)

Inserting these into the differential equation (21) and separating the equation
for each power of ε the following equations occur,

ẋ0 = A0x0 + b0, (23a)

ẋ1 = A0x1 +A1x0 + b1, (23b)

ẋ2 = A0x2 +A1x1 +A2x0 + b2, (23c)

ẋ3 = . . . (23d)

...

where it is understood that all quantities are function of t. The first equation
(23a) corresponds to the system equation for ε = 0, for which the solution
x0(t) is assumed known. The solution x0(t) occurs in the forcing term for the
equation of x1(t), which has the same system matrix A0 as the known solution.
The solutions x0(t) and x1(t) act as forcing terms of the x2(t) equation and so
on. In this way the solution xm(t) can be found from knowledge of the solutions
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x0(t),x1(t), . . . ,xm−1(t). The constants of integration should be chosen to avoid
terms which lead to unstable solutions in the higher order equations.

In the present study the method is expanded to include two parameters and the
solutions is expanded in the kv parameter plane. Due to the periodic forcing
term we will limit our attention to periodic solutions with the same period. Since
the natural frequency of the out-of-plane motion is a multiple of the forcing
frequency, all integration constants must be chosen as zero to avoid unstable
terms. Using a linearised version of the state space equation the solutions of
order three are found, where ci and si are short notation for cos i and sin i,

θ(ν) =− ci
3 v +

s2i
3 sin (2ν) v2 +

cis
2
i

6 sin (2ν) vk

+ 2
9cis

2
i

(
cos (2ν) + 1

3

)
v3

+
s2i
3

(
s2i
260 cos (4ν)+

7
3

(
c2i − 2

35s
2
i

)
cos (2ν)− 1

9

(
c2i +

1
4s

2
i

) )
v2k

+
cis

2
i

13

(
s2i
40 cos (4ν)+

13
3

(
c2i +

1
30s

2
i

)
cos (2ν) + 13

216s
2
i

)
vk2 + . . . (24a)

φ(ν) = si
3 cos (ν) v − 2cisi

9 sin (ν) v2

+
s3i
36

(
− 3

5 sin (3ν) + sin (ν)
)
vk

+
s3i
9

(
3
5 cos (3ν) + cos (ν)

)
v3

+
cis

3
i

9

(
− 2

5 cos (3ν) + 2 cos (ν)
)
v2k

− s3i
30

(
s2i
56 cos (5ν) +

(
c2i +

13
120s

2
i

)
cos (3ν)−

5
3

(
c2i − 1

20s
2
i

)
cos (ν)

)
vk2 + . . . (24b)

To obtain periodic solutions which matches the nonlinear system better, the
method is extended to the take the nonlinearities in the system into account.
This is done by expanding the nonlinearities into Taylor series. This leads to
a more complicated solution scheme than shown in (23), but the basic solu-
tion (23a) and the feature that solutions act as forcing terms for the higher
order equations, remains unchanged. From this method the following periodic
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solutions are obtained,

θ(ν) =− ci
3 v +

4s2i
9 sin (2ν) v2 +

cis
2
i

6 sin (2ν) vk

+ ci
18

(
23
3 s2i cos (2ν) +

(
− 4

9c
2
i + s2i

))
v3

+
s2i
18

(
s2i
65 cos (4ν)+

20
(
c2i − 7

150s
2
i

)
cos (2ν)− 1

3s
2
i

)
v2k

+
cis

2
i

13

(
s2i
40 cos (4ν)+

13
3

(
c2i +

1
30s

2
i

)
cos (2ν) + 13

216s
2
i

)
vk2 + . . . (25a)

φ(ν) = si
3 cos (ν) v − 2cisi

9 sin (ν) v2

+
s3i
36

(
− 3

5 sin (3ν) + sin (ν)
)
vk

+ si
27

(
58
15s

2
i cos (3ν) +

1
2

(
c2i + 4s2i

)
cos (ν)

)
v3

+
cis

3
i

9

(
− 3

5 cos (3ν) +
5
3 cos (ν)

)
v2k

− s3i
30

(
s2i
56 cos (5ν) +

(
c2i +

13
120s

2
i

)
cos (3ν)−

5
3

(
c2i − 1

20s
2
i

)
cos (ν)

)
vk2 + . . . (25b)

Without damping injection k = 0 the solution coincides with the open-loop solu-
tion found in [3] and without the bias term v = 0 the periodic solution vanishes
to the origin which is in agreement with the fact that the damping injection
stabilizes the origin. The method of finding periodic solutions is implemented
using Maple and the solutions shown in this paper are of order seven.

b) Properties of periodic solutions

Fig. 2 shows the solution for k = 0.5 and v = ±0.5 along with a numerical
simulations of the two sets of parameters. One problem of using a perturbation
method is that the convergence of the solutions is only guaranteed for small
changes of the parameters. The present solution appears to converge inside a
unit circle of the parameter plane for k > 0. For the simulations shown in
Fig. 2 it is seen that the simulation of v = 0.5 converges closer to the series
approximation than the solution of v = −0.5.

The offset of the solutions along the θ-axis is determine by the sign of the
bias term corresponding to the direction of the current. This sign determines
if electrical energy is converted to orbital energy or vice versa. From (25) it
is seen that θ(ν) only consist of frequencies of even multiple of the orbit rate,
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Figure 2: Series approximation of the periodic solutions with k = 0.5 and
v = ±0.5. The solutions at t = 0 are marked with ◦.

while ϕ(ν) consist of frequencies of odd multiples. This is a consequence of
the way the solutions are affecting each other through the forcing terms. This
property implies that θ(ν) = θ(ν + π) and ϕ(ν) = −ϕ(ν + π). This corresponds
to symmetric solutions around the θ-axis, which is also seen from the simulation
in Fig. 2. Seen from a physical point of view, this symmetry is induced by the
symmetry of the aligned dipole model approximating the magnetic field.

c) Region of stable periodic solutions

In this section Floquet theory is applied on a linearised version of the closed
loop system to determine the stability of the periodic solutions. A linearisation
of the system closed by the feedback loop u = −ky + v can be written as,

ẋ = Acl (ν, k, v, i)x+ bcl (ν, k, v, i) , (26)

where Acl and bcl are T = 2π periodic in ν and given as,

Acl (ν, k, v, i) =




0 0 1 0
0 0 0 1
−3 −2vsi sin ν −kc2i kcisi cos ν

2vsi sin ν −4 kcisi cos ν −ks2i cos
2 ν


 , (27a)

bcl (ν, k, v, i) =
[
0 0 −ci si cos ν

]T
. (27b)
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Figure 3: Stability region in the parameter plane. Simulations of the system
are shown in fig. 4 for the points in the parameters plane marked
with ×.

The deviation from the periodic solution xp(ν) can be found from the variational
equation by writing the solution as x(ν) = xp(ν) + η(ν). The deviation η(ν)
obeys the differential equation,

η̇(ν) = Acl (ν, k, v, i)η(ν), (28)

hence the stability of the periodic solutions can be found from a Floquet analysis
of Acl. In this work the characteristic multipliers ρj are found from numerical
integration of the system. Alternatively they could be found as power series
similar to those describing the periodic solutions. One advantage of using the
numerical method is that the limitations in the region of convergence for the
series solution is avoided. Fig. 3 shows the magnitude of the stability deciding
multiplier ρ, i.e. the multiplier of largest magnitude. For clarity the multiplier is
only shown in the stable region, |ρ| < 1. The characteristic multiplier indicates
how fast the deviation η(ν) converges to zero, i.e. the settling time of the solu-
tion. Fig. 3 shows that a minimum exist of the multiplier. This can be seen as
an analogy to a LTI system where an increasing damping coefficient eventually
will lead to an overdamped system, hence the settling time will increase, result-
ing in a slower convergence. It was demonstrated by Peláez et al. [3] that the
open-loop periodic solutions exhibit a weakly unstable behaviour (i.e. |ρ| = 1)
up until a certain level v∗ where the deciding multiplier moves outside the unit
circle. The same is indicated in Fig. 3 where v∗ ≈ ±3.5, which is in agreement
with [3].
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(a) k = 0.3, v = 0.5, ρ ≈ 0.79
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(b) k = 3, v = 0.5, ρ ≈ 0.19
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(c) k = 1, v = 1, ρ ≈ 0.51
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Figure 4: Simulations of closed loop system using four different parameter sets
from the stable region.

Fig. 4 shows simulations using different parameters from the stable part of
the parameter plane. In Fig. 4a the series solution is shown along with the
simulation, and it is seen that the trajectory in fact converges towards this
periodic solution. For the simulation in Figures 4b, 4c and 4d the reference
trajectory is found from a numerical simulation, since the series solution do not
converge in this part of the parameter plane. Consequently it is no surprise that
the solution in these cases goes towards the periodic solution. The difference
in convergence is clearly illustrated in Figures 4a and 4b, where the increase
of controller gain has resulted in a larger damping of the deviation, hence a
faster settling time. The simulations in Figures 4c and 4d have similar deciding
multipliers, however, from the figures it seems that the solution in Fig. 4c has
a faster convergence than the solution in Fig. 4d, despite the similar multiplier.

Using the characteristic multipliers the (complex) solution to the equation of
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variation (28) can be written assuming distinct multipliers as,

η(ν) =

2n∑

j=1

cjρ
ν
T

j ψj(ν), (29)

where ψj(ν) are a T -periodic functions and cj are constant. Ignoring other than
the term of the deciding multiplier the norm of the deviation can be written as,

‖η(ν)‖ ≈ c |ρ| ν
T ‖ψ(ν)‖ . (30)

Since ψ(ν) is a T -periodic function it is seen that the term |ρ| ν
T will determine

the convergence of the solution. Fig. 5 shows ‖η(ν)‖ together with the conver-

gence term |ρ| ν
T and it is seen that the deviation follows the convergence term.

The difference between the ‖η(ν)‖ and the convergence term has three main
reasons: the remaining multipliers which will have the most profound effect in
the beginning of the simulation; the periodic function ψ(ν) which effect will be
averaged out over a period; and the nonlinearities in the system.

V Discussion

One open question is how the stabilized periodic solutions can be utilized to
create a strategy for performing orbit maneuvers. The main task in this con-
nection would be to investigate what effect a tether following a periodic solution
will have on the orbit parameters. The changes in the orbit parameters due to
an electrical tether have been investigated in several papers (see [12]), but, to
the knowledge of the authors, not for a tether following a periodic trajectory. In
this connection one would expect that it do not matter if the open-loop periodic
solutions or a perturbed version of these are stabilized. The region of attraction
of each solution should also be investigated further, since it will influence the
transition between two periodic solutions.

VI Conclusion

A controller to stabilize periodic solutions of an electrodynamic tether system
was investigated in this paper. The controller was based on a control design
providing damping injection for the open-loop equilibrium. A series approxima-
tion of the solution was found in state space and the stability was investigated
numerically in the parameter plane. It was shown that there exists a mini-
mum of the stability deciding characteristic multiplier in the parameter plane
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(b) k = 3, v = 0.5, ρ ≈ 0.19
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(c) k = 1, v = 1, ρ ≈ 0.51
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Figure 5: Convergence towards the periodic solutions, for the previously used
parameters.

and that the convergence towards the periodic solutions was determined by the
characteristic multipliers found from a linear Floquet analysis.
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Paper C

Passivity-based control of a

rigid electrodynamic tether1

Abstract

Electrodynamic tethers provide actuation for performing orbit correction of
spacecrafts. When an electrodynamic tether system is orbiting the Earth in
an inclined orbit, periodic changes in the magnetic field result in a family of
unstable periodic solutions in the attitude motion. This paper shows how these
periodic solutions can be stabilized by controlling only the current through the
tether. A port-controlled Hamiltonian formulation is employed to describe the
tethered satellite system and a passive input-output connection is utilized in
the control design. The control law consists of two parts, a feedback connec-
tion, which stabilizes the open-loop equilibrium, and a bias term, which is able
to drive the system trajectory away from this equilibrium, a feature necessary
to obtain orbit adjustment capabilities of the electrodynamic tether. It is then
shown how the periodic solutions of the closed-loop system can be approximated
by power series and a relation is found between control gain and perturbations
around the open-loop solution. Stability properties of the system are investi-
gated using Floquet analysis and the region of stability is found in the plane
defined by the control parameters.

1Submitted to Journal of Guidance, Control, and Dynamics.
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Nomenclature

A = System matrix of open-loop system
Ak = System matrix related to the feedback loop
Av = System matrix related to the bias term
B = Magnetic field of the Earth, T
BZ = Aligned dipole approximation of B, T
b = Input function
ci = Short notation for cos i
Fe = Lorentz force per unit length tether, N
g = Input function in PCH framework
H = Non-dimensional Hamiltonian
H = Hamiltonian, J
I = Current through tether, A
i = Orbit inclination, rad
J = Interconnection matrix
k = Controller gain
k∗ = Optimal controller gain
L = Lagrangian, J
l = Length of tether, m
M = Monodromy matrix
mA = Mass of sub-satellite, kg
mB = Mass of main satellite, kg
mt = Mass of tether, kg
p = Non-dimensional generalized momenta, p = [pθ pϕ]

T

pθ = Generalized momentum associated with θ
pϕ = Generalized momentum associated with ϕ
Q = Non-dimensional generalized force
q = Generalized coordinates q = [θ ϕ]T , rad
R = Damping matrix
r = Unit vector along the tether
si = Short notation for sin i
u = Control input
v = Bias term
x = State vector
y = System output
θ = In-plane angle, rad
Λ = Collection of tether parameters, Nm
λmax = Largest eigenvalue of damping matrix
µ = Standard gravitation parameter of the Earth, m3s−2

µm = Strength of the magnetic field, Tm3

ν = Argument of latitude (time variable), rad
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ρ = Stability-deciding characteristic multiplier
ρj = Characteristic multipliers
τ = Generalized force τ = [τθ τϕ]

T , Nm
Φ = Fundamental matrix
ϕ = Out-of-plane angle, rad
Ω = Right ascension of the ascending node, rad
ω = Orbit rate, rad/s

I Introduction

A tethered satellite system (TSS) is a system of two or more satellites connected
with cables. TSS’s have been proposed in connection with numerous different
tasks and for several missions, and have therefore been the subject of much
research over the last three decades (see [1, 2] for reviews). In this work we will
consider a TSS consisting of two satellites, a main satellite and a sub-satellite,
connected by an electrodynamic tether (EDT). An electrodynamic tether pro-
vides a means of performing orbit maneuvers using only electrical power. The
system acts as an actuator for the orbit motion by generating an electrodynamic
force (the Lorentz force) acting along the tether. By collecting electrons from
the surrounding plasma and emitting them from dedicated electron emitters,
a current can be led through the tether. Interaction of this current with the
magnetic field of the Earth creates a Lorentz force that influences the trajectory
of the satellite. This controllable force could be used to perform orbit adjust-
ments, and electrodynamic tethers have been proposed for deorbiting obsolete
satellites [3, 4], for altitude adjustment of the international space station [5] and
for reboosting in connection with momentum exchange between satellites [6].

There are several control tasks associated with an electrodynamic tether sys-
tem. Tether vibration control [7] damps vibration along a flexible tether; orbit
control [8, 9] changes one or more of the orbit parameters; and attitude control
deals with stabilizing libration of the satellite-tether system [10, 11]. This work
treats the attitude problem. Control of the attitude motion is required in or-
der to utilize the Lorentz force for the desired orbit corrections. The attitude
control problem is difficult since control of current alone leaves the attitude dy-
namics under-actuated, and instantaneous forces are always perpendicular to
the instantaneous B-field. This problem is also well known when dealing with
attitude control using magnetic coils [12]. Common assumptions when dealing
with the attitude control problem are to model the tether as a rigid rod and
ignore the orbit changes caused by the Lorentz force. These assumptions will
also be made in this study.
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An electrodynamic tether system was investigated in [13] assuming a constant
current was passed through the tether. In this case the Lorentz force, acting as
a periodic forcing term, was shown to give rise to unstable periodic solutions
of the attitude motion. When driven by a constant current, energy is pumped
into the attitude motion and active current control is needed to stabilize the
motion. Looking into the deorbiting problem, a simple switching control law
was presented in [14], where the current was switched on and off depending
on the level of a Lyapunov function. Ref. [15] showed that stabilization of the
open-loop equilibrium of the TSS was possible using feedback linearization. Due
to zeros in the input function, the primary control law contained singularities.
This problem was handled by switching to a secondary control law in proximity
of a singularity. Generation of a Lorentz force and ability to influence the orbit
of a TSS is the prime purpose of an electrodynamic tether. This requires the
tether to carry a non-zero current, but will also drive the attitude system away
from its open-loop equilibrium. The ability to stabilize the attitude away from
the equilibrium is therefore crucial. An commonly explored control strategy for
the attitude dynamics is stabilization of open-loop periodic solutions. Two con-
trol laws were investigated by [10] with this purpose. The first approach used a
feedback of the difference between the present trajectory and a reference trajec-
tory. The second used time-delayed autosynchronization, where the difference
between the present trajectory and a one-period-delayed trajectory was used in
the feedback loop. Stabilization was obtained using additional actuators. Ex-
amining energy considerations, Williams [16] stabilized the periodic solutions
by synchronization between the system energy and the energy of a reference
trajectory. Considering the combined attitude and orbit control problem using
Gauss’s planetary equations for modeling the orbit changes, the recent work
[11] used numerical predictive control and time-delayed feedback after having
discretized the system dynamics.

This article suggests a solution to the attitude control problem for the tethered
satellite system using a passivity-based control law, based on a port-controlled
Hamiltonian (PCH) formulation of the dynamics. A control law that adds damp-
ing to the open-loop system is shown to make the open-loop equilibrium asymp-
totically stable. It is discussed how, by adding a bias term, open-loop periodic
solutions can be stabilized. The proposed time-varying control law is shown
to have the advantage of being static in the sense that no delayed signals or
reference trajectories are used. Properties of the closed-loop periodic solutions
are investigated and compared to the open-loop solutions. The work presented
in this article is an extension of results presented in [17] and [18].

The outline of the article is as follows: Section II derives the equations of motion
for the system and formulates it as a port-controlled Hamiltonian system such
that a passive input-output connection is created. Sections III and IV consider
the control design for stabilization of the open-loop equilibrium and the open-
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loop periodic solutions, and bounds are provided for the region of convergence
for the time-varying controller. Finally section VI offers conclusions.

a) Notation

The notation rT and AT will be used to denote the transpose of a vector r
or a matrix A. The derivative of a scalar or a vector function (H or x) with
respect to the argument of latitude will be denoted Ḣ or ẋ. The Jacobian of a
scalar function will be defined as a column vector, hence ∂H

∂x is a column vector.
Identity matrices are denoted I, where dimensions should be clear from the
context.

II Model

Consider a TSS consisting of a main satellite and a sub-satellite connected by
an electrodynamic tether. The satellites have masses mB and mA and are
treated as point masses. The tether has mass mt and length l. The system
will not be considered during the deployment and retrieval phases, hence the
length of the tether is assumed constant. For simplicity it is assumed that the
mass of the main satellite comprises the main contribution to the total mass
mB ≫ mA +mt, and the center of mass (CM) of the system can therefore be
assumed to coincide with that of the main satellite. Only the effect of the EDT
on the attitude motion is modeled, and no additional orbit-perturbing forces
are included, hence the CM follows a Keplerian orbit. Further, the system is
orbiting the Earth in an assumed circular orbit. The orbit plane of the circular
orbit can be described by two of the orbit parameters, the right ascension of
the ascending node Ω and the inclination i, illustrated in Fig. 1. The orbit
position is described by the argument of latitude in this paper, where the orbit is
circular with nonzero inclination. The argument of latitude is denoted ν, which
is measured from the direction of the ascending node. In case the inclination
was zero, the true longitude would be used instead. The orbit rate ω = dν

dt is
constant and ν is therefore adopted as the independent variable of the model.
The attitude motion is described in the orbit frame spanned by the x, y, and z
axes. The x-axis is placed along a vector from the Earth to the CM, the y-axis
is directed along the orbit velocity, and the z-axis is normal to the orbit plane.
The orbit frame can be found from an Euler rotation of the inertial frame using
the angles Ω, i and ν as indicated in Fig. 1. The inertial frame does not rotate
with the Earth and is defined by the X , Y and Z axes. The X-axis is in the
direction of the vernal point, and the Z-axis coincides with the rotational axis
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Figure 1: Orbit description of a circular orbit and the orbit frame.

of the Earth. The attitude of the TSS is described by a unit vector r from the
main satellite to the sub-satellite. The system has two stable equilibria due to
the gravity gradient. They occur when r coincides with the x-axis of the orbit
frame. In this article the system is described around the equilibrium along the
negative x-axis and this equilibrium is referred to as the open-loop equilibrium,
even though there are several. The choice of working point is, however, of no
importance due to the symmetry of the gravitational potential. Since the tether
is of constant length, the tether motion is restricted to a sphere of radius l in
the orbit frame. This sphere is described by an in-plane angle θ and an out-of-
plane angle ϕ, which are adopted as the generalized coordinates of the system,
q = [θ ϕ]T . The in-plane and the out-of-plane angles are illustrated in Fig. 2.
The in-plane angle is the angle between the negative part of the x-axis and
the tether projection onto the orbit plane. The out-of-plane angle is the angle
between the projection and the actual tether position. Using the generalized
coordinates, the vector along the tether can be written as,

r =



− cos θ cosϕ
− sin θ cosϕ

− sinϕ


 . (1)
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Figure 2: Definition of the in-plane and the out-of-plane angle in the orbit
frame.

a) Equations of motion

The Lagrangian of the system has been derived in several previous articles (see
e.g. [13]) and can be expressed as,

L(q, q̇) = 1

2
Λ

(
ϕ̇2 + cos2 ϕ

((
1 + θ̇

)2
+ 3 cos2 θ

))
, (2)

where Λ = 1
3ω

2l2(3mA + mt) is a constant formed by the parameters of the
system. Besides the kinetic energy, the Lagrangian includes the gravitational
potential, the Coriolis potential and the centrifugal potential, represented by the
terms 3

2Λ cos2 θ cos2 ϕ, Λθ̇ cos2 ϕ, and 1
2Λ cos2 ϕ, respectively. In a Hamiltonian

description of the system, the states representing the generalized velocities are
replaced by the generalized momenta p̂ = [p̂θ p̂ϕ]

T
= ∂L

∂q̇ . From (2) these are
given by,

p̂θ = Λ
(
1 + θ̇

)
cos2 ϕ, (3a)

p̂ϕ = Λϕ̇. (3b)

Using the generalized momenta, the Hamiltonian H of the system is H (q, p̂) =
q̇T p̂− L (q, q̇ (q, p̂)),

H (q, p̂) =
1

2Λ

(
p̂2ϕ +

p̂2θ
cos2 ϕ

− 2Λp̂θ − 3Λ2 cos2 θ cos2 ϕ

)
. (4)
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To simplify the Hamiltonian, it is scaled by Λ−1. Furthermore, the generalized
momenta are scaled and shifted such that

pθ =
p̂θ
Λ

− 1, (5a)

pϕ =
p̂ϕ
Λ

. (5b)

The shift of p̂θ is introduced to place the open-loop equilibrium at the origin
of the state space. Using these coordinates, the equations of motion are then
expressed using Hamilton’s equation,

q̇ =
∂H

∂p
, (6a)

ṗ = −∂H

∂q
+Q, (6b)

where p is introduced as p = [pθ pϕ]
T and Q = τ

Λ is a non-dimensional version
of the generalized force. The Hamiltonian is dimensionless and independent of
the system parameters,

H (q,p) =
1

2

(
p2ϕ +

(pθ + 1)
2

cos2 ϕ
− 2pθ − 3 cos2 θ cos2 ϕ

)
+ 1. (7)

Here, a constant +1 is added, without loss of generality, to create a positive
definite Hamiltonian around the origin. Inserting in (6) the equations of motion
are,

θ̇ =
pθ + 1

cos2 ϕ
− 1, (8a)

ϕ̇ = pϕ, (8b)

ṗθ = −3

2
cos2 ϕ sin 2θ +Qθ (8c)

ṗϕ =
pθ + 1

cos2 ϕ
tanϕ− 3

2
cos2 θ sin 2ϕ+Qϕ (8d)

The unforced system (Q = 0) has four equilibria, which can be determined from
the critical points of the Hamiltonian. All equilibria are situated in the orbit
plane (ϕ∗ = 0) and have zero momenta p∗ = 0. The system has two stable
equilibria placed at θ∗ = 0 and θ∗ = π. The remaining two θ∗ = ±π

2 are saddle
nodes and are unstable.

b) Actuation

The system is actuated by a current through the tether. The current interacts
with the magnetic field of Earth and gives rise to a mechanical force acting along
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the tether. An essential part of the actuator model is the modeling of the B-field
of the Earth. The B-field can be modeled using a spherical harmonic expansion
(see [19, 20]). A dipole model is a spherical harmonic expansion of degree 1 and
is commonly employed for analytical derivations to avoid the complexity of a
higher order spherical harmonic expansion. The dipole model can be written as
the sum of three components, each of which are dipoles directed along the axes
in an Earth-fix coordinate system,

B = BX +BY +BZ . (9)

The main contribution to the B-field comes from the dipole BZ aligned with the
rotational axis of the Earth. The remaining dipoles cause B to be tilted from
the rotational axis of the Earth. This reflects the fact that the magnetic north
pole of the Earth does not coincide with the geographical north pole. An upper
limit for the magnitude of perturbations caused by BX and BY was provided
in [21]. It is common to use BZ to model the B-field, since this choice leads to a
model independent of the rotation of the Earth. This study also adopts BZ as
the B-field model, but B will be used in simulations to investigate the influence
of perturbations to the B-field. By evaluating the dipole model at the origin of
the orbit frame, the dipole BZ is expressed in the orbit frame,

BZ =
µm

R3



−2 sinν sin i
cos ν sin i

cos i


 , (10)

where µm is the strength of the dipole and R is the radius of the orbit. The
electrodynamic force acting on the tether is the Lorentz force, which is pro-
portional to the cross product between a tangent vector to the tether and the
B-field vector. Since the tether is assumed to be rigid, the position vector r
forms a tangent vector at every point along the tether and the Lorentz force per
unit length tether becomes,

Fe = Ir ×B, (11)

where I is the current through the tether. In the sequel, it is assumed that I
can be controlled without limitations and the B-field is constant over the length
of the tether. To find the generalized force τ = [τθ τϕ]

T caused by the Lorentz
force, Eq. (11) is projected onto the generalized coordinates. Inclusion of the
contribution from the entire tether requires integration along the tether,

τθ =

∫ l

0

F T
e

∂(sr)

∂θ
ds, (12a)

τϕ =

∫ l

0

F T
e

∂(sr)

∂ϕ
ds. (12b)

Using (12), the non-dimensional generalized force has the affine form,

Q = b(ν, q)u. (13)
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The input u is a dimensionless quantity proportional to the current through the
tether,

u =
3

2

1

3mA +mt

µm

µ
I, (14)

where µ is the standard gravitation parameter of the Earth. Considering b(q, ν) =
[bθ bϕ]

T as input function to the system,

bθ(ν, q) = cosϕ sinϕ sin i (cos ν sin θ − 2 sin ν cos θ)− cos2 ϕ cos i, (15a)

bϕ(ν, q) = sin i (cos θ cos ν + 2 sin θ sin ν) . (15b)

The zeros of the input function are important for the actuation and control
design of the system. The input function was analyzed and conditions for zeros
were stated in [17].

The model is under-actuated since it has two degrees of freedom (DOF) and
only one control input. Consequently, the magnitude of the Lorentz force can
be controlled by the current, but the direction is determined by the states and
the direction of the magnetic field. The system description is time-periodic, since
the TSS is orbiting through the static magnetic field. Using a more advanced
model of the magnetic field, the system description would still be time-periodic,
but the period would be a combination of the orbit period and the period of
the rotation of the Earth. It is observed that the Hamiltonian of the system is
time-invariant when the orbit is circular.

c) Passive input-output description

The control design presented in this paper is based on a passive input-output
connection, which is the subject of this section. The equations of motion (6)
can be written in a compact form as,

ẋ = J
∂H

∂x
+ g (ν, q)u, (16)

where x = [qT pT ]T is the state vector and g (ν, q) = [0T bT (ν, q)]T . The
square matrix J is the symplectic identity ,

J =

[
0 I

−I 0

]
. (17)

In a general context, the formulation can be expanded to include damping and
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an output y,

ẋ = (J −R)
∂H

∂x
+ g (ν, q)u, (18a)

y = gT (ν, q)
∂H

∂x
. (18b)

The matrix J = −JT is called the interconnection matrix and R = RT ≥ 0
is the damping matrix. Both matrices can be functions of state variables and
time. The matrix J describes how the system is interconnected which in case
of a mechanical system like the electrodynamic tethers is given as (17), and R
describes the damping in the system. In the present model damping e.g. air drag
is not taken into account, but the matrix will occur later to describe the damping
added in the closed-loop system. This system formulation is called a port-
controlled Hamiltonian (see [22]) and a salient feature is that the input-output
connection is passive. The input u and the output y is called the port power
variables. The product yu describe instantaneous power flow of the system
due to the control action. This can be seen from the time derivative of the
Hamiltonian which are,

Ḣ = −
(
∂H

∂x

)T

R
∂H

∂x
+ uy. (19)

The first term describe the power flow due to the damping. From (19) it is also
seen that u and y forms a passive input-output connection, if the Hamiltonian
has a lower bound. This section has presented the system for a single input,
but it is similar for the multi-input case.

III Stabilization of open-loop equilibrium

Having formulated the system with a passive input-output relation, the stabi-
lization of the origin can be obtained under conditions described below, by the
simple feedback law (see [22, Corollary 3.3.1, p. 44]),

u = −ky, k > 0. (20)

This can be seen by using the Hamiltonian H as a Lyapunov function. The
quantity H has been defined as a positive definite function around the open-
loop equilibrium and its derivative with respect to ν is,

Ḣ =

(
∂H

∂x

)T

J
∂H

∂x
+

(
∂H

∂x

)T

g (ν, q)u

= −ky2. (21)
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Hence, the derivative of H is negative semi-definite. The first term vanishes
due to the structure of the interconnection matrix. If the system is zero-state
observable, the derivative will be negative definite and asymptotic stability is
guaranteed. The zero-state observability condition can be relaxed to zero-state
detectability, following [22]. Zero state observability can be formulated as: A
lasting zero in the output (y = 0) of the unforced dynamics (u = 0) implies that
the system is at the zero state x = 0. Due to the definition of y, the zeros of the
input function (15) are essential to fulfill the zero-state observability condition.
The zeros induced by the time-varying input have no influence on the zero-state
observability since these are countable. The zeros induced by the generalized
coordinates have no influence either, which is best seen by writing the output
as,

y = bT (ν, q)q̇ = bθ(ν, q)θ̇ + bϕ(ν, q)ϕ̇. (22)

If q induces a zero in the input function when q̇ 6= 0, the open-loop dynamics
will lead the system trajectory away from this point, since the origin is the only
equilibrium in the region of interest. This also shows that q̇ = 0 cannot induce a
lasting zero, except for the open-loop equilibria. The inclination i can also cause
a zero in bθ and bϕ for equatorial (i = 0◦) or polar orbits (i = 90◦), respectively.
These situations are hard to handle since either the in-plane or the out-of-plane
dynamics are unactuated. However, these conditions are not of great practical
importance since they occur as an effect of simplifying the model of the magnetic
field. Using the control law (20), the closed-loop dynamics can be written as a
Hamiltonian system with additional damping using the open-loop Hamiltonian
H ,

ẋ = (J − kR)
∂H

∂x
. (23)

Here, the positive semi-definite damping matrix can be written as,

R = g(ν,x)gT (ν,x) =

[
0 0

0 D

]
. (24)

The matrix D = b(ν, q)bT (ν, q) describes damping added by the controller to
the system. The matrix D has one positive eigenvalue λmax and one equal
to zero, except in the case where b = 0. The lack of full of rank of D is a
consequence of the system being under-actuated. The energy flow of the closed-
loop system becomes,

Ḣ =

(
∂H

∂x

)T

(J − kR)
∂H

∂x

= −k

(
∂H

∂p

)T

D
∂H

∂p

= −kq̇TDq̇ ≥ −kλmax ‖q̇‖2 . (25)
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The energy flow is non-positive and has a lower bound determined from the
non-zero eigenvalue of D.

One of the advantages of the control law in Eq. (20) is that the zeros in the
input function do not lead to singularities in the control. This could potentially
lead to a large region of attraction (ROA) for the closed-loop system.

a) Closed-loop analysis

The closed-loop description of the system will be time-periodic due to the peri-
odic changes in the input function. To investigate the stability and performance
of such a system, Floquet analysis can be used if the system is linear. Linearizing
the closed-loop system around the origin leads to the description,

ẋ = A1(ν)x, (26)

where the system matrix A1 (ν) is a T = 2π periodic function. The system
matrix can be written as,

A1(ν) = A− kAk(ν), (27)

where A is the open-loop system matrix and Ak(ν) is the part originating from
the feedback loop,

A =




0 0 1 0
0 0 0 1
−3 0 0 0
0 −4 0 0


 , (28)

Ak(ν) =




0 0 0 0
0 0 0 0
0 0 cos2 i − 1

2 sin (2i) cos ν
0 0 − 1

2 sin (2i) cos ν sin2 i cos2 ν


 . (29)

According to Floquet theory, a fundamental matrix Φ(ν) of (26) fulfills,

Φ(ν + T ) = Φ(ν)M , (30)

where the monodromy matrix M can be written as

M = Φ−1(0)Φ(T ). (31)

The stability of the system can be determined from the eigenvalues ρi of M ,
which are referred to as the characteristic multipliers. The system (26) is asymp-
totically stable if all ρi are placed inside the unit circle. The multiplier ρ = ρj
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where j = argmaxi |ρi| is denoted the stability-deciding multiplier. Remember-
ing that the fundamental matrix fulfills the differential equation,

Φ̇(ν) = A1 (ν)Φ (ν) , (32)

it is seen from (31) that the monodromy matrix can be found from an integration
of (32) over one period of time from the initial conditions Φ(0) = I. The
multipliers can be expanded in a power series around a value of k where the
multipliers are known [23, 24]. In this case around k = 0, where the system
equals the unforced open-loop system. To do this, the monodromy matrix is
expanded in a power series as well. The open-loop system is time-invariant
and the multipliers and the monodromy matrix are therefore easily found for
k = 0. The expansions of ρ3 and ρ4 are difficult to find since they are equal for
k = 0. The geometric multiplicity equals two, hence in this case there are two
independent eigenvectors corresponding to the eigenvalues ρ3 = ρ4 = 1. The
expansion becomes even more complicated since the eigenvalues do not cross at
k = 0 but only share a tangent. This means that the expansions of ρ3 and ρ4 are
equal in a linear approximation. The expansion of the characteristic multipliers
becomes,

ρ1,2 = e±2
√
3πj
(
1− πc2i k + π

12c
2
i

(
6πc2i ∓ j

√
3
)
k2
)
+ . . . , (33a)

ρ3,4 = 1− π
2 s

2
i k +

s4i
96

(
12π2 ± j5π

)
k2 + . . . , (33b)

where j is the imaginary unit and ci and si are short notation for cos i and sin i,
respectively. The multipliers ρ1,2 and ρ3,4 are associated with the in-plane and
the out-of-plane motion, respectively, and their magnitude can be written as

|ρ1,2| = 1− c2iπk + c4i
π2

2 k2 + . . . , (34a)

|ρ3,4| = 1− s2i
π
2 k + s4i

π2

8 k2 + . . . . (34b)

It is seen that the system is asymptotically stable for small k > 0. One problem
of the expansion is that the radius of convergence is limited. Another problem
is that it can be hard to find higher order terms due to difficulties of finding the
higher order terms of the monodromy matrix.

An alternative way of finding the characteristic multipliers is to use numerical
integration to determine the monodromy matrix from (31). Figure 3 shows
the characteristic multipliers ρi found numerically for increasing controller gain
k plotted in the complex plane. The corresponding magnitudes are shown in
Fig. 4. The solutions placed on the unit circle for k = 0 correspond to the
open-loop solutions where the in-plane and the out-of-plane dynamics have a
natural frequency of

√
3 and 2 as indicated by the eigenvalues of A in (28).

It is seen that there exists an optimal controller gain k∗ which minimizes |ρ|.
The existence of k∗ is also indicated by (34). For k > k∗ the stability-deciding



III Stabilization of open-loop equilibrium 91

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Real part Re ρ

Im
a
g
in

a
ry

p
a
rt

Im
ρ

 

 

Multipliers ρ1,2

Multipliers ρ3,4

Startpoints, k = 0
Endpoints, k = 50

Figure 3: Characteristic multipliers ρi as function of k for a fix inclination of
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Figure 4: Absolute value of ρi as function of k for a fix inclination of i = 45◦.

multiplier is seen to converges towards the unit circle. It is noted that ρ stays
inside the unit circle for all k > 0, hence the system is asymptotically stable for
all k > 0, which is in agreement with the result found using H as a Lyapunov
function.
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Figure 5 shows the stability-deciding multiplier as a function of the controller
gain for different inclinations. The qualitative behavior of the multiplier shown
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Figure 5: Absolute value of the stability-deciding multiplier for different incli-
nations.

in Fig. 5 follows the behaviour seen in Fig. 4, with the exception of a polar or
an equatorial orbit. In these cases the stability-deciding multiplier lies on the
unit circle for all k as a consequence of the unactuated in-plane and out-of-plane
dynamics, respectively. This is also confirmed from the expansion (34) where
higher order terms of the in-plane and the out-of-plane multipliers are multiplied
by a factor cos2 i and sin2 i, respectively.

The proposed control law preserves all four open-loop equilibria, so the closed-
loop system can only be asymptotically stable, global asymptotical stability can
not be obtained. An estimation of the region of attraction (ROA), the range of
initial conditions x0 for which the system will converge to the origin, is therefore
crucial in the evaluation of the control design. In this connection it is important
to observe that the control law is the same for the two stable equilibria. It is
therefore expected that the state space is divided equally between the regions
of attraction around the two stable equilibria.

An obvious way to estimate the ROA is to use the Hamiltonian of the system.
If the trajectory gets trapped in the potential well around the origin, the non-
increasing energy level guaranteed by the controller will lead the trajectory to
the origin. To be able to escape the potential well, the energy level must be
greater than the energy level H∗ of the separatrices in state space. The energy
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level can be found from the energy at the saddle nodes that divides the potential
wells of the stable equilibria (see Fig. 6). All initial conditions (q0,p0) around
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Figure 6: Region of attraction shown in the configuration space for q̇ = 0.

the equilibrium with H(q0,p0) < H∗ lie in the region of attraction for the
equilibrium. Since the Hamiltonian is independent of the orbit inclination, the
estimation of the ROA will be independent of inclination as well. Figure 6 shows
the estimate of the ROA in the configuration space for q̇ = 0 along with the
level curves of H .

Figure 6 also shows the ROA found numerically for the initial time ν0 = 0. The
shape of the numerically determined ROA is similar for other initial times. The
region of attraction more or less equals the lower hemisphere of the configura-
tion space. The configuration space is divided equally between the region of
attraction of the upper and the lower equilibrium, as expected.

Figure 7 shows two simulations of the convergence towards the energy minimum
for different initial times. The initial state is set to q0 = [π6

π
6 ]

T and q̇0 = 0.
The dashed curves in the Figure show simulations using the non-aligned dipole
to model the B-field, with different initial positions of the perturbation dipoles.
It is seen that the perturbation of the B-field results in energy levels slightly
perturbed compared to the nominal model, but the converges is unaffected by
the perturbation.

The control strategy can handle even more complicated models of the magnetic
field, provided that sufficient information on the model is available to the con-
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Figure 7: Simulated energy flow for ν0 = 0 and ν0 = π
2 .

troller. The bound on the energy flow shown in Fig. 7 equals λmax ‖q̇‖2, which
is a scaled version of the lower bound given in (25). It is seen that the energy
level of the system is only decreasing when the limit on the energy flow is larger
than zero.

IV Stabilization of periodic solutions

Since it is necessary to lead a non-zero current through the tether to generate
a Lorentz force on the system, and this current will force the system away from
its open-loop equilibrium, it is necessary to find a closed-loop solution that
can stabilize the attitude motion with a non-zero tether current. Stabilization
about an arbitrary point in the configuration space is not possible due to the
under-actuated nature of the system. Only the control signal u = 0 will lead to
equilibria in the equations of motion. Any other control signal will lead to time
variations in either the in-plane or the out-of-plane momentum. Since the closed-
loop system describes a continuous vector field, the system trajectory cannot
converge to points other than the equilibria. An alternative to a stabilization of a
point in the configuration space is to stabilize a periodic trajectory. The periodic
open-loop solutions found in [13] are obvious candidates for such trajectories.
This strategy was investigated in several articles [10, 11, 16].

To lead the trajectory away from the open-loop equilibrium and stabilize the
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open-loop periodic solutions, a bias term v is added to the control law (20),

u = −ky + v, k > 0. (35)

This control law is motivated by the creation of the open-loop periodic solutions
when k = 0. The unstable open-loop periodic solutions were seen to evolve from
the marginally stable open-loop equilibrium when the system was perturbed by
a constant input. The intention of the control law is then to create similar
periodic solutions from the asymptotically stable closed-loop equilibrium. One
could expect that the periodic solutions would inherit the stability properties
of the closed-loop equilibrium. However, stable periodic solutions only exist for
some combinations of the controller gain k and the bias term v. The reason is
that the two variables will influence the energy flow to the system, and thereby
the stability, in different directions.

a) Closed-loop analysis

Using the control law (35), the linear approximation of the closed-loop system
becomes,

ẋ = A2 (ν)x+ b2 (ν) v, (36)

where b2(ν) is a T = 2π periodic forcing term originating from the bias,

b2(ν) =




0
0

− cos i
sin i cos ν


 . (37)

The system matrix A2(ν) is also T = 2π periodic and can be written as,

A2(ν) = A− kAk(ν) + vAv(ν), (38)

where A and Ak(ν) are given in (28) and (29), respectively, and Av(ν) is given
as,

Av(ν) =




0 0 0 0
0 0 0 0
0 −2 sin i sin ν 0 0

2 sin i sin ν 0 0 0


 . (39)

The periodic solutions xp can be approximated by a power series in the param-
eters k and v using a perturbation method. The solutions for small k and v are
approximated around the known solution for k = v = 0. This is obtained by
writing the system matrices and the solution as power series in the parameters.
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The resulting differential equation is split according to each power and solved,
based on the known solution. This approach is a trivial extension of the method
presented in [25]. The expansions of the solutions are, to the third order,

θ(ν) =− ci
3 v +

s2i
3 sin (2ν) v2 +

cis
2
i

6 sin (2ν) vk

+ 2
9cis

2
i

(
cos (2ν) + 1

3

)
v3

+
s2i
3

(
s2i
260 cos (4ν)+

7
3

(
c2i − 2

35s
2
i

)
cos (2ν)− 1

9

(
c2i +

1
4s

2
i

) )
v2k

+
cis

2
i

13

(
s2i
40 cos (4ν)+

13
3

(
c2i +

1
30s

2
i

)
cos (2ν) + 13

216s
2
i

)
vk2, (40a)

φ(ν) = si
3 cos (ν) v − 2cisi

9 sin (ν) v2

+
s3i
36

(
− 3

5 sin (3ν) + sin (ν)
)
vk

+
s3i
9

(
3
5 cos (3ν) + cos (ν)

)
v3

+
cis

3
i

9

(
− 2

5 cos (3ν) + 2 cos (ν)
)
v2k

− s3i
30

(
s2i
56 cos (5ν) +

(
c2i +

13
120s

2
i

)
cos (3ν)−

5
3

(
c2i − 1

20s
2
i

)
cos (ν)

)
vk2. (40b)

When no damping is added to the system (k = 0), the solutions (40) coincide
with the open-loop periodic solutions found by Peláez et al. [13]. The solutions
can be approximated with higher precision by taking the non-linearities into
account. This is done by replacing the non-linearities with their Taylor expan-
sions and again writing the solution as a power series. The improved solutions
are given as,

θ(ν) =− ci
3 v +

4s2i
9 sin (2ν) v2 +

cis
2
i

6 sin (2ν) vk

+ ci
18

(
23
3 s

2
i cos (2ν) +

(
− 4

9c
2
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v3

+
s2i
18
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(
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1
30s

2
i

)
cos (2ν) + 13

216s
2
i

)
vk2, (41a)
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φ(ν) = si
3 cos (ν) v − 2cisi

9 sin (ν) v2
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36
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− 3

5 sin (3ν) + sin (ν)
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vk
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(
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15s
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The solutions (41) agree with the one found in [13] for k = 0, which illustrates
that the closed-loop solutions are perturbed by the controller gain k compared
to the open-loop solutions. Note that the in-plane solutions only consist of
even multiples of the basic frequency, while the out-of-plane only consists of
odd multiples. Consequently, θ(ν) = θ(ν + π) and ϕ(ν) = −ϕ(ν + π), which
geometrically means that the solutions are mirrored in the θ-axis. The solutions
are seen to collapse to a point on the θ-axis for an equatorial orbit (i = 0◦).
The approximations of the periodic solutions are found as an eight order power
series, which is used when referring to a series approximation.

The solutions (40) and (41) are only valid for small values of k and v due to the
convergence properties of the power series. Periodic solutions exist, however, for
larger values as well. These solutions can be found by numerical simulations.
To investigate the stability of the solutions, the variable η(ν) = x(ν)−xp(ν) is
introduced to describe a deviation from a periodic solution. Inserting in (36) it
is seen that η(ν) obeys the differential equation,

η̇ = A2(ν)η. (42)

The equation can be investigated by means of Floquet analysis, which is carried
out in the same manner as in the previous section. Using a power series the
multipliers become,

ρ1,2 = e±2
√
3πj

(
1− πc2i k + π

12 c
2
i

(
6πc2i ∓ j

√
3
)
k2 ± js2i ci

π
√
3

3 kv
)
+ . . . , (43a)

ρ3,4 = 1− s2i
π
2 k +

s4i
96

(
12π2 ± j5π

)
k2 ± js2i ci

7π
12 kv ± js2i

π
6 v

2 + . . . . (43b)

The magnitudes of the multipliers are,

|ρ1,2| = 1− c2iπk + c4i
π2

2 k2 + . . . , (44a)

|ρ3,4| = 1− s2i
π
2 k + s4i

π2

8 k2 + . . . . (44b)

The magnitudes are unchanged compared to (34) by the bias in the second order
approximation. This shows that the periodic solutions are asymptotically stable
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for small k > 0 and small v. The region of stable periodic solutions (|ρ| < 1) is
shown in the parameter plane defined by k and v in Fig. 8. The Figure is based
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Figure 8: Stable region in the parameter space for i = 45◦.

on stability-deciding multipliers found numerically. Stable periodic solutions
are seen to exist in a region in the parameter plane and, in agreement with the
result from the previous section, the line v = 0 is included in this region. For
each controller gain the bias term has lower and upper limits, which are related
to energy flow into the system. However, the relations are quite complex and
further scrutiny is not within the scope of this paper.

The approximating series are convenient to show the existence and basic prop-
erties of the periodic solutions, as well as to determine initial conditions for
simulations. To investigate how well the power series approximates the periodic
solution, the error ε is introduced,

ε =
1

2π

∫ 2π

0

‖x̂(ν)− x̃p(ν)‖2 dν, (45)

where x̃p is the series approximation. The solution x̂ is found from a nonlinear
simulation that has converged to a periodic solution. The error is shown for
different parameter values for a third and an eighth order approximation in
Figures 9 and 10. In the case v = 0, where the solution collapses to the origin,
the approximation is exact. The investigation of accuracy of the approximating
series requires that the solution is stable and also that the parameters are in
the region of converge of the series. Another obstacle is that for k close to
zero, convergence of the solution is so slow that computational efforts makes it
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Figure 9: Error associated with the third order approximation.
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Figure 10: Error associated with the eighth order approximation.

impractical to determine the magnitude of error. Apart from these limitations,
Figures 9 and 10 show that the approximating series can be used with reasonable
accuracy for parameter ranges shown. It is noted that the limitations associated
with the approximating series do not limit the general investigation in this paper
as the general results were based on full simulations of the nonlinear system.
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Figures 11 to 14 show simulations of the system for v = 1, and an inclination
of i = 45◦. Figure 11 illustrates a simulation of the open-loop system (k = 0)
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Figure 11: Open-loop simulation of unstable periodic solution for k = 0 and
v = 1.

with an initial value found from the approximated periodic solution. It is seen
that this open-loop periodic solution is unstable, even though the instability
evolves quite slowly. Figures 12 and 13 shows a simulation of the closed loop
system with k = 1

2 , illustrated in the configuration space and as function of time,
respectively. It is seen that the system trajectory converges towards a periodic
solution, which resembles the solution approximated by the power series. The
stabilized solution is perturbed from the open-loop solution due to the damping
injection. Figure 14 shows a simulation of a periodic solution for k = 1

2 using
tilted and non-tilted dipole models of the magnetic field of the Earth. Focus
on the periodic solution is obtained by removing an initial transient. To avoid
a quasi-periodic solution, the simulation was carried out for a satellite with an
orbit period of 90 min, hence the periodicity of the system is increased from
2π to 32π, due to the rotation of the Earth. The simulations verify that the
controller is able to stabilize a periodic solution with the new period, which
is bounded in a region around the unperturbed solution. Since the controller
contains no information of a reference solution, the solution is given entirely by
the variation in the magnetic field. The mismatch between the B-field model
used in the controller and the actual one has no significant influence on the
stability of the solution.
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Figure 12: Converges towards periodic solution for k = 1
2 in the configuration

space.
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Figure 13: Converges towards periodic solution for k = 1
2 .

V Conclusion

This paper developed a control law for stabilizing periodic solutions in the at-
titude of an electrodynamic tether system. The time-varying control law was
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Figure 14: Periodic solution using different models of the magnetic field.

shown to stabilize a family of periodic solutions, which were found to be per-
turbed versions of a known family of unstable open-loop periodic solutions. The
control design was based on a passive input-output connection obtained by for-
mulating the equations of motion as a port-controlled Hamiltonian system. The
passivity-based formulation allowed zeros in the input function to be handled in
a simple manner, without introducing singularities in the control law. The first
part of the control law gave stabilization of the open-loop equilibrium. A large
region of attraction was demonstrated for this control law, and it was shown
that an optimal control gain exists, providing the fastest convergence towards
the equilibrium. An attractive feature of the total control law was shown to
be its independence of reference signal and delayed signals. The shapes of the
stabilized periodic solutions were investigated using series approximations and
numerical simulations. The periodic solutions were found to form symmetric
curves around points in the orbit plane, whose distances to the origin were in-
creasing with a bias term in the controller. Stability properties of the controller
were investigated by Floquet analysis and the allowable parameter range for
stable solutions was determined. The work assumed a simple model of the mag-
netic field, but the sensitivity to perturbations in the magnetic field was briefly
studied. The control law was shown to give an asymptotically stable closed-loop
system for all relevant orbits.
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Paper D

Modeling of tethered satellite

formations using graph

theory1

Abstract

Tethered satellite formations have recently gained increasing attention due to
future mission proposals. Several different formations have been investigated for
their dynamic properties and control schemes have been suggested. Formulating
the equations of motion and investigation which geometries could form stable
formations in space are cumbersome when done at a case to case basis, and a
common framework providing a basic model of the dynamics of tethered satellite
formations can therefore be advantageous. This paper suggests the use of graph
theoretical quantities to describe a tethered satellite formation and propose a
method to deduce the equations of motion for the attitude dynamics of the
formation in a compact form. The use of graph theory and Lagrange mechanics
together allows a broad class of formations to be described using the same
framework, and the manual element in the modeling is significantly alleviated.
A method is stated for finding stationary configurations and an upper limit
of their number is determined. The method is shown to be valid for general
tethered satellite formations that form a tree structure.

1Submitted to Acta Astronautica.
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I Introduction

Tethered satellite formations have been proposed in several contexts, especially
in relation to remote sensing and space stations [1]. Several potential applica-
tions have been investigated in the literature. An elevator system for a space
station using tethers was investigated in [2]. In connection with remote sensing,
tether systems have been investigated as atmospheric probes [3] and interfer-
ometers [4]. The dynamic properties of several different types of formations
have been investigated. Chain structures were studied by [5, 6], ring structures
by [7], hub-and-spoke structures by [8, 9] and anchored structures, the latter
also refereed to as double pyramid formations, by [8, 10]. Ref. [8] investigated
hub-and-spoke and closed-hub-and-spoke formations. A hub-and-spoke forma-
tion consists of a main satellite and a number of sub-satellites tethered to the
main one. In a closed-hub-and-spoke formation, the sub-satellites are further
connected to each other. The closed-hub-and-spoke formation was found to be
unstable, but was shown to be stabilizable by tethering an anchor satellite to
each side of the formation, such that the formation resembled a double pyra-
mid. Ref. [10] considered a double pyramid formation in connection with a
multi-sensor network. The formation was assumed to rotate around the axis
through the anchor satellites. The stability region was stated as function of
the system parameters and a condition was found to ensure that the tethers of
the formation were kept in tension. A chain structure is probably the kind of
formation which has received the greatest attention. Both chains with a fixed
number of satellites like three or four [11, 12], and a general N-body chain [5, 6]
have been investigated. The research on two tethered satellites is a very mature
area and it is not in the scope of this article to give an overview of this field.
The equations of motion for an N-body structure were deduced in [5] for both
in-plane and out-of-plane dynamics and a simple relation was found between the
natural frequency of the in-plane and the out-plane motions. The model was
expanded in [13] to consider a varying tether length, flexibility of the tether and
a non-circular orbit. The stationary configurations situated in the orbit plane
of an N-body chain were found in [6] through an investigation of the stationary
points of the potential energy and an upper limit on total number of stationary
points was found. The investigation of the stationary configurations was further
expanded in [14] to also include the out-of-plane dimension of the configuration
space.

This work considers tethered satellite formations forming a tree structure, a
topology of tethers where there are no cycles. The main contributions of this
article are a description of the structure using graph theoretical quantities, a
derivation of the equations of motion in generic form using the graph description
of the formation topology, and an investigation of the stationary configurations
of formations based on this description. The structure of a formation is described
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using a matrix describing the path along the tethers from each satellite to a
main satellite of the formation. The equations of motion are deduced for a
formation with constant-length tethers using the path matrix as a parameter.
The dynamics are stated both for the motion in the orbit plane, and for the
general motion in three dimensions. A method to determine the stationary
configurations in the orbit plane is described. The proposed method follows
the steps presented in [6], but extends the method by expanding the scope to a
general tree structured formation.

The outline of the remaining part of the article is as follows. Means for a graph
theoretical description of the tethered satellite formation are first introduced.
Two matrices, describing the interconnection of satellites and the paths around
the formation, are defined along with useful sets of edges and nodes. Section
III treats the derivation of the equations of motion for the motion in the orbit
plane. Stationary configurations in the orbit plane are dealt with in Section IV
where a method of finding the configurations is stated and the configurations
are classified according to the number of vertical tethers in a configuration.
Section V uses a Y-formation with four tethers to exemplify the investigation of
stationary configurations. Section VI offers conclusions of the work. A expands
the equations of motion to out-of-plane motion and B provides proofs of the
properties used in Section IV.

II Graph description of formations

Consider a tethered satellite formation consisting of massless tethers connecting
satellites in a tree structure. The limitation to a tree structure is introduced
to simplify the equations of motion by avoiding algebraic constraints associated
with cycles within a formation. In a tree structure with n+1 satellites there are
n tethers, with each tether connecting two satellites. Each satellite is modeled
as a point mass mi for i = 0, . . . , n and tethers are modeled as rigid rods of
constant length lj for j = 1, . . . , n. The total mass of the system is denoted
m =

∑n
i=0 mi and the relative mass of each satellite is µi =

mi

m for i = 0, . . . , n.
The relative masses and the length of the rods are collected in the diagonal
matrices Λ ∈ R

(n+1)×(n+1) and L ∈ R
n×n,

Λ =




µ0 0 . . . 0
0 µ1 . . . 0
...

...
. . .

...
0 0 . . . µn


 (1)
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L =




l1 0 . . . 0
0 l2 . . . 0
...

...
. . .

...
0 0 . . . ln


 . (2)

The formation is described by a connected, directed graph representing masses
as nodes and rods as edges. The notationmi and lj is reused to denote the nodes
and the edges of the graph. The graph forms a rooted tree where the node m0

represents the root. The root of the tree can be chosen arbitrarily. It is assumed,
without loss of generality, that each edge is directed away from the root and that
the edge lk is connected to and directed towards mk. The formation topology
can then be described by the incidence matrix B ∈ R

(n+1)×n where each row
represents a node and each column an edge. The incidence matrix B with
elements Bij is defined as,

Bij =





1 if lj is connected to and pointing away from mi

−1 if lj is connected to and pointing towards mi

0 if lj is not connected to mi

. (3)

Due to the assumption of a tree structure, the incidence matrix B has full
rank and by removing one row from B a square matrix of full rank is formed.
This square matrix is called the basic incidence matrix or the reduced incidence
matrix with respect to the node corresponding to the removed row. The basic
incidence matrix A ∈ R

n×n describes the structure with respect to the root,
that is the sub-matrix of B which excludes the first row. The path from a node
mi to the root is unique and can be described as a column of the path matrix
P ∈ R

n×n. The ith column represents the directed path from mi to m0 such
that,

Pji =





1 if lj is in the path from mi to m0 directed towards m0

−1 if lj is in the path from mi to m0 directed towards mi

0 if lj is not in the path from mi to m0

. (4)

All non-zero elements of P are negative due to the definition of the direction of
the edges. The basic incidence matrix and the path matrix are related as each
others inverse,

P = A−1, (5)

according to [15, Theorem 2.10, pp. 55-56].

Some sets connected to the graph are introduced in the following. These sets
are used in connection of the determination of the stationary configuration of
the formation. The set Tj comprise the nodes in a sub-tree rooted at mj . The
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sub-tree occurs when the graph is divided into two disjoint connected graphs by
removing the edge lj . After introducing Tj , the path matrix can be written as,

Pji =

{
−1 for i ∈ Tj

0 for i /∈ Tj

. (6)

Definition (4) is valid for a tree structure with arbitrary directed edges, while
(6) is only valid assuming edges are directed away from the root.

The set J includes an arbitrary combination of edges. The set can be decom-
posed into sets Jk for k = 1, . . . , ℓ each describing a connected structure. It is
assumed that the elements of the set Jk are not connected to elements in Jp for
k 6= p, this means the decomposition is minimal in the sense that ℓ is as small
as possible. The complement of the set J is denoted J̄ and the cardinality of
these sets are denoted |J | and |J̄ |, respectively. The set of neighboring edges of
lj is denoted Nj, meaning that the edge lk is included in Nj if one of the two
nodes incident with lj is also incident with lk. The notation NJ = ∪i∈JNi \ J
is used for the neighboring edges of J . To illustrate the notation, an example of
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m3
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m5 m6

m7

m8 m9

l1

l2

l3

l4

l5 l6

l7

l8 l9

Figure 1: Graph of a rooted tree.

a tree structure is shown in Figure 1. The corresponding incidence matrix and
path matrix are,

B =




1 0 0 0 0 0 1 0 0
−1 1 0 1 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 1 1 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1



, (7)

P =




−1 −1 −1 −1 −1 −1 0 0 0
0 −1 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 −1 −1 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1



. (8)
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Some of the sets introduced are listed in Table 1 for the graph of the example
in Figure 1.

Nj Tj

j = 1 {2, 4, 7} {1, 2, 3, 4, 5, 6}
j = 4 {1, 2, 5, 6} {4, 5, 6}
j = 9 {7, 8} {9}

(a) Sets regarding edges.

NJ Jk
J = {2, 4, 5, 8} {1, 3, 6, 7, 9} {2, 4, 5}, {8}
J = {1, 7, 9} {2, 4, 8} {1, 7, 9}
J = {3, 5, 6} {2, 4} {3}, {5, 6}

(b) Sets regarding the set J .

Table 1: Definition of sets occurring in the graph in Figure 1

III Equations of motion

Dynamical equations of the attitude motion of the satellite formation are derived
in this section. The derivation follows the derivation in [5], but takes the general
tree structure into account. To describe the attitude motion of the formation
the orbit frame is introduced. The frame is centered at the center of mass (CM)
of the formation and has the x-axis along the position vector from the Earth
to the CM and the z-axis perpendicular to the orbit plane. The masses of the
formation are described by a position vector ri = [xi yi xi]

T for i = 0, . . . , n and
a vector along the positive direction of each rod is introduced as ρj = [ξj ηj ζj ]

T

for j = 1, . . . , n (see Figure 2). Using the path matrix, the position of mi for
i = 1 . . . n can be found relative to m0. To be able to describe the position of
all masses, including m0, by a single expression, the path matrix is expanded to
P̃ ∈ R

n×(n+1) such that P̃ = [0n P ]. The additional column of zeros 0n ∈ R
n

can be interpreted as representing the path from the root node to itself. This
path does not contain any edges. Using P̃ the position vector of each mass can
be written as a sum along the path to the mass,

ri = r0 −
n∑

j=1

P̃j(i+1)ρj for i = 0, . . . , n. (9)

The sign of the sum originates from the fact that the vectors ρj are pointing
away from the root, while the paths are directed towards the root. Since the
frame is centered at the CM, the position vectors obey the relation

∑
i miri = 0,
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Figure 2: A tethered satellite formation in the orbit plane.

which combined with (9) leads to the position vector of m0,

r0 =

n∑

j=1

ρj

n∑

k=1

P̃j(k+1)µk. (10)

Substituting (9) back into (10) the position vectors of the masses in the forma-
tion are,

ri = −
n∑

j=1

(
P̃j(i+1) −

n∑

k=1

P̃j(k+1)µk

)
ρj

=

n∑

j=1

(
n∑

k=1

P̃j(k+1) (µk − δik)

)
ρj , (11)

where δik is Kronecker’s delta. Equation (11) gives the relation between the
position of mi and the directions of the rods lj . By collecting xi in a vector
x ∈ R

n+1 and ξj in a vector ξ ∈ R
n defined as

x =
[
x0 x1 . . . xn

]T
, (12)

ξ =
[
ξ1 ξ2 . . . ξn

]T
, (13)

the relation of the x-component of (11) can be written in the compact form,

x = ΓP T ξ. (14)

The components of the matrix Γ ∈ R
(n+1)×n are given as,

Γik = µk − δi(k+1). (15)
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Introducing y, z ∈ R
n+1 similar to x and η, ζ ∈ R

n similar to ξ, the relations
can be expanded to the position along the y- and z-axes as,

y = ΓP Tη, (16a)

z = ΓP T ζ. (16b)

Note that the original path matrix P is used in this relation, not the expanded
version P̃ .

In the following, the equations of motion are derived under the assumption of
constant length rods and a CM following a circular orbit with orbital rate ω. For
simplicity, we first restrict the derivation of the dynamics of this formation to
the motion in the orbit plane. The derivation for the general three dimensional
motion is included in A. Due to the assumption of a circular orbit, ω is constant,
and the true anomaly ν = ωt is introduced as the time variable for the system.
The in-plane angles θj are chosen as generalized coordinates and are collected
in the vector θ = [θ1, . . . , θn]

T . The in-plane angle θj is defined with respect to
axes parallel with the orbit frame centered at the initial node of lj , as seen in
Figure 2. The vectors along the rods are then,

ρj =

[
lj cos θj
lj sin θj

]
. (17)

The velocity of each mass in the inertial frame can be written as Vi = VCM +vi
for i = 0, . . . , n, where VCM is the velocity of the CM and vi is the velocity of
mi relative to the CM. The relative velocity is,

vi =

[
ωẋi − ωyi
ωẏi + ωxi

]
, (18)

where (˙) denotes the first derivative with respect to ν relative to the orbit
frame. The total kinetic energy of the formation can be written as,

T =
m

2
|VCM |2 +

n∑

i=0

miVCM · vi +
1

2

n∑

i=0

mi |vi|2 . (19)

Only the last term of (19) contributes to the equations of motion, since the first
term is constant and the second term vanishes in Lagrange’s equation. With an
assumption that the length of each rod lj is much smaller than the orbit radius,
the potential energy of the system can be approximated by,

V = VCM +
ω2

2

n∑

i=0

mi

(
|ri|2 − 3x2

i

)
, (20)

where VCM is the constant orbital energy of the circular orbit, which will not
contribute to the attitude motion. From the energy functions the equations of
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motion can be found using Lagrange’s equation,

d

dν

∂T
∂θ̇j

− ∂T
∂θj

+
∂V
∂θj

= 0, j = 1, . . . , n. (21)

Inserting (19) and (20) in (21) results in the equations of motion,

Mθ̈ + G = 0, (22)

where

M =Esin θLGLEsin θ +Ecos θLGLEcos θ, (23a)

G =(Esin θLGLEcos θ −Ecos θLGLEsin θ)
(
2I +Eθ̇

)
θ̇

+ 3Esin θLGLEcos θ1n. (23b)

The matrices Ecos θ ∈ R
n×n and Esin θ ∈ R

n×n are diagonal matrices with
cos θj and sin θj , respectively, at the jth diagonal entry. Similarly Eθ̇ ∈ R

n×n is

diagonal with θ̇j at the jth diagonal entry. All elements of the vector 1n ∈ R
n

equal 1. All parameters of the model are then collected in a single matrix LGL
where,

G = PΓTΛΓP T . (24)

HereG ∈ R
n×n is referred to as the mass matrix of the system. The mass matrix

will be investigated further in the next section, in connection with determination
of stationary configurations of the system.

IV Stationary configuration in the orbit plane

In this section, the stationary configurations of the system are investigated. We
restrict the investigation to the stationary configuration in the orbit plane. The
in-plane stationary configuration can be treated separately, since the motion in
the orbit plane is restricted to an invariant manifold in state space (see A). It
should, however, be emphasized that there exist stationary configurations which
are not situated in the orbit plane. In [14] these general stationary configurations
have been investigated for a chain structure. The present investigation follows
the same steps as [6] and is based on the same properties which are expanded
to the present case with a tree structure.

a) Properties of mass matrix

For the analysis of the stationary configuration the mass matrix G is of sig-
nificant importance. We therefore start this section by stating some properties
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regarding G which will be used when finding and analyzing the stationary con-
figuration of the formation. Proofs of the properties of this section can be found
in B. From (24) the matrixW ∈ R

n×n is defined asW = ΓTΛΓ such that the
mass matrix can be written as,

G = PWP T . (25)

From the definition of Γ in (15) the elements of W can be found as,

Wik = µiδik − µiµk. (26)

The matrix W is clearly symmetric and obeys the following property.

Property 1. The matrix W is positive definite and the elements of the inverse
matrix are given as,

W−1
ki =

1

µ0
+

δki
µi

. (27)

Property 1 serves mainly to prove the statements regarding G in the next prop-
erty.

Property 2. The mass matrix G is symmetric and positive definite. The ele-
ments of its inverse satisfies the property that G−1

jk = 0 for k /∈ Nj ∧ j 6= k.

The last point in Property 2 states that the transformation of G into a identity
matrix can be made by linear combinations consisting only of columns corre-
sponding to neighboring edges. This point is similar to Property 1 in [6]. The
assumption k /∈ Nj is equivalent to j /∈ Nk, which must be the case since G is
symmetric.

The elements of G can be formulated by means of the sub-trees Tj of the graph
introduced in Section II. This formulation is useful when proving Property 3
and it will be treated further in the proof of that property. First the sum Mjk

is introduced as,

Mjk =
∑

i∈Tj∩Tk

µi. (28)

The definition is based on the nodes of two arbitrary sub-trees in the graph, Tj

and Tk. The sum is taken over the intersection of the two trees, hence for Mjk

to be different from zero Tj must be a sub-tree in Tk or vice versa. Using Mjk

the elements for G can be written as,

Gjk = Mjk −MjjMkk. (29)

Note thatMjj sums the nodes in the sub-tree Tj and is therefore always different
from zero.
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When solving the equation leading to the stationary configuration a reduced
version of the mass matrix will occur. From an arbitrary set of rods J with
complement J̄ the reduced mass matrix Ĝ ∈ R

|J̄|×|J̄| is defined by removing the
rows and columns corresponding to rods in the set J . We connect a reduced
graph with the set J . The graph occurs when the edges in the set J are removed

m0

m1

m2

m3

m4

m5 m6

m7

m8 m9

l1

l2

l3

l4

l5 l6

l7

l8 l9

(a) Original Graph

m0

m1,2,4,5

m3 m6

m7,8

m9

l1

l3 l6

l7

l9

(b) Reduced graph

Figure 3: Graph and its by J = {2, 4, 5, 8} reduced counterpart.

from the graph as shown in Figure 3. The reduction is done based on the
decomposition of J = ∪kJk introduced in Section II. Each component Jk forms
a tree. The tree Jk can be assumed rooted at a node mi if all edges j ∈ Jk are
included in sub-tree Ti. We denote mi the root of Jk. The sub-tree Ti can be
decomposed into Jk and a number of sub-trees. When the tree Jk is removed the
from the graph, these sub-trees are connected to the root of Jk. The following
property, which is illustrated in Figure 3, shows a relation between the graph
reduced by the set J and the reduced matrix Ĝ.

Property 3. Consider a graph reduced by the set J = ∪kJk and the roots mi of
Jk. Assume that the nodes mi are assigned the sum of the nodes in the sub-trees
Jk, while the remaining nodes stay unchanged. Then the mass matrix of the
reduced graph will equal the reduced mass matrix Ĝ of the original graph.

The important point regarding Property 3 is that Ĝ is the mass matrix for a
different graph, hence the statement in Property 2 also applies to Ĝ. When
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working with the reduced graph we keep referring to the rods according to the
original graph. This also applies when referring to rows, columns, and elements
of the corresponding matrices and vectors.

The next property addresses the similarity between Ĝ−1 and G−1.

Property 4. Assume that j, k ∈ J̄ such that the element Ĝ−1
jk exists, then

Ĝ−1
jk = G−1

jk for j, k /∈ NJ . (30)

This property states that the common elements of a row of Ĝ−1 representing an
edge with no neighbors in J is unchanged compared toG−1, hence the reduction
only introduces a local change in the inverse mass matrix. Furthermore, using
Property 2 it can be seen that the elements excluded from the row compared to
G−1 in this case equal zero. Note that Ĝ−1 is symmetric, hence the property
could just as well be explained with respect to columns.

b) Equation of stationary configuration

From the equations of motion (22) a stationary configuration θ∗ in the orbit
plane is found as a solution to the equation,

E∗
sin θGξ

∗ = 0n, (31)

where ξ∗ = [l1 cos θ
∗
1 , . . . , ln cos θ

∗
n]

T and E∗
sin θ denotes Esin θ evaluated at θ =

θ∗. The first thing to note about (31) is that the stationary configurations are
symmetric in the sense that if θ∗ is a stationary configuration so is θ̄∗ = π1n−θ∗.
In a stationary configuration a rod is characterized as horizontal if cos θ∗k = 0.
If sin θ∗k = 0 the rod is vertical. Eq. (31) is in general solved by choosing a set
J containing vertical rods, hence sin θ∗j = 0 for j ∈ J . Denoting the rows of G
as Gj for j = 1, . . . , n, the matrix equation (31) can be divided into n coupled
scalar equations,

sin θ∗jG
T
j ξ

∗ = 0 for j = 1, . . . , n. (32)

From (32) it is seen that for each vertical rod one of the n equations is solved,
hence introducing J leaves

∣∣J̄
∣∣ equations to be solved.

Two choices of J stand out from the general solution procedure. First J = ∅
where no rods are situated in a vertical position. In this case (31) reduces to,

Gξ∗ = 0n. (33)
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Due to Property 2 the equation has a unique solution ξ∗ = 0n corresponding
to rods situated in a horizontal position. Each rod can have two different ori-
entations in a horizontal position (corresponding to symmetric configurations),
hence there are 2n different configurations for ξ∗ = 0n. The second special case
is J̄ = ∅, i.e. all rods are in a vertical position. In this case, all n equations
in (32) are solved immediately. A rod in a vertical position has two different
orientations, which again leads to 2n configurations. The existence of the 2n+1

configurations in the two special cases are independent of the parameters of
the system. These stationary configurations are similar to the four stationary
configurations induced by the gravity gradient for a single rod in orbit.

In the remaining cases where J 6= ∅ and J̄ 6= ∅ equation (31) can be written as,

Ĝξ̂∗ = −
∑

k∈J

ĝkξ
∗
k, (34)

where ξ̂∗ equals ξ∗ reduced by the set J . The vector ĝk is the kth column of G
reduced by the elements in J . Note that ĝk does not equal the kth column of the
reduced mass matrix Ĝ since k ∈ J . Eq. (34) gives the relation between the rods
fixed in a vertical position ξ∗k for k ∈ J and the orientation of the remaining rods

are collected in ξ̂∗. The vertical orientation implies that ξ∗k = ±lk for k ∈ J ,
hence (34) actually includes 2|J| equations taking all sign combinations into

account. According to Property 3 the matrix Ĝ has full rank, and the solution
of (34) is unique for each right-hand side. The existence of each configuration
can be investigated from the vector σ̂ ∈ R

|J̄|,

σ̂ = −L̂−1Ĝ−1
∑

k∈J

ĝkξ
∗
k, (35)

where L̂ is a reduced version of L. The elements of σ̂ equal σ̂j = cos θ∗j for

j ∈ J̄ . Hence the stationary configuration exists if the absolute value of all
elements of σ̂ are less than one, |σ̂j | < 1 for j ∈ J̄ . Note that the case |σ̂j | = 1
is not included, since this would contradict the assumption that j ∈ J̄ .

The similarity between G−1 and Ĝ−1 stated in Property 4 can be used together
with the knowledge of the zero elements of G−1 from Property 2 to conclude
that,

(Ĝ−1
j )T ĝk = 0 for k ∈ J, j /∈ NJ (36)

where Ĝ−1
j denotes the jth column of Ĝ−1. From (35) it is seen that this implies

that σ̂j = 0 if j /∈ NJ . The geometrical interpretation of this property is that, in
a stationary configuration, only the neighbors of a vertical rod will be affected,
while all others will remain horizontal. Hence it can be concluded that the
stationary configuration consists of groups of either horizontal or vertical rods,
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which are separated by no more than one inclined rod. This was also concluded
in [6] for a chain structure. The vertical groups are orthogonal to the horizontal
groups and therefore no forces can be transferred along the inclined rods, in
stationary configurations. This furthermore shows that all horizontal groups
are placed along the y-axis where the centrifugal force cancels the gravitational
force. A detailed stability analysis of the configurations is not in the scope of this
article, but the above description indicates that all formation with one or more
horizontal groups will be unstable, since the masses of these groups will balance
at the unstable equilibrium between the centrifugal and the gravitational force.

Since both G and Ĝ have full rank, the described method will result in all
possible stationary configurations of the system. The total number of possible
stationary configurations can be found by realizing that the set J can be chosen
in 2n different ways. Each rod have two possible orientations, hence there are
2|J|2|J̄| = 2n possible orientations for each choice of J . This leads to a total
number of possible configurations of 22n. This limit is the same as was obtained
for a chain structure in [6].

V Example

This example will consider five satellites in a Y-formation illustrated in Figure
4. The nodes m0 and m2 are marked to better illustrate the formation. This

m0

m1

m2

m3 m4

x

y

Figure 4: Y-formation.

is also done in the Figures 5 to 7. The incidence matrix of the Y-formation is
given as,

B =

[ 1 0 0 0
−1 1 0 0
0 −1 1 1
0 0 −1 0
0 0 0 −1

]
. (37)
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Using this incidence matrix and (25) the mass matrix is,

G =

[ µ0(1−µ0) µ0µ2,3,4 µ0µ3 µ0µ4

µ0µ2,3,4 (1−µ0−µ1)µ2,3,4 (1−µ0−µ1)µ3 (1−µ0−µ1)µ4

µ0µ3 (1−µ0−µ1)µ3 (1−µ3)µ3 −µ3µ4

µ0µ4 (1−µ0−µ1)µ4 −µ3µ4 (1−µ4)µ4

]
, (38)

where µ2,3,4 = µ2 + µ3 + µ4. The inverse is given as,

G−1 =




µ0+µ1
µ0µ1

− 1
µ1

0 0

− 1
µ1

µ1+µ2
µ1µ2

− 1
µ2

− 1
µ2

0 − 1
µ2

µ2+µ3
µ2µ3

1
µ2

0 − 1
µ2

1
µ2

µ2+µ4
µ2µ4


 . (39)

According to the previous section, the total number of possible stationary con-
figurations is 256 for this example. The qualitatively different configurations are
illustrated in Figures 5 to 7. The configurations are found by fixing the masses

(a) J = ∅ (b) J = {1}

(c) J = {2} (d) J = {3}, {4}

Figure 5: Y-formations with |J | = 0 or |J | = 1.

uniformly and adjusting the length of the rods to illustrate the formation best
possible and ensure that a stationary configuration actually exists. It is empha-
sized that the figures only exemplify configurations, since for each choice of J ,
there exist 16 configurations divided into 8 symmetric pairs. The formations
illustrate that a horizontal rod only affects its neighboring rods, while the re-
maining rods will maintain their vertical orientation. It is also seen that masses
not connected to a rod in the set J are placed along the y-axis. Examining the
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(a) J = {1, 2} (b) J = {1, 3}, {1, 4}

(c) J = {2, 3}, {2, 4} (d) J = {3, 4}

Figure 6: Y-formations with |J | = 2.

(a) J = {1, 2, 3}, {1, 2, 4} (b) J = {1, 3, 4}

(c) J = {2, 3, 4} (d) J = {1, 2, 3, 4}

Figure 7: Y-formations with |J | = 3 or |J | = 4.

configurations it is seen that rods that are neither vertical nor horizontal, and
are connected to a group at both ends, separate two groups of either horizontal
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or vertical rods. Such rods cannot affect either of the groups with forces, since
the configuration is stationary.

VI Conclusions

With the aim of easing the task of modeling dynamics of tethered satellite for-
mations, and determine stationary configurations, this paper combined graph
theory with Lagrange formalism to obtain a generic framework for modeling.
Imposing an assumption of a tree structure on the formation, enabled the path
between the satellites, along the tethers, to be unique. Furthermore it allowed
the paths from sub-satellites to a main satellite to be described by a single
matrix quantity. A generic method for modeling was obtained by using this
path matrix together with Lagrange formalism and the equations of motion
were derived for both the in-plane motion and for the general three dimensional
case. Constant-length rigid tethers and a circular orbit were assumed for the
formation. The assumption of a tree structure simplified the equations, since
the absence of algebraic constraints around cycles in the formation resulted in a
formulation where each tether represents a single degree of freedom. A particu-
lar feature of the methodology was that the equations of motion were given in
a matrix formulation, with the desirable property that all physical parameters,
as well as the formation description, were captured by a single matrix. Fur-
thermore, a method of finding the stationary configurations in the orbit plane
was suggested, using the generic equations of motion. These configurations were
classified based on the numbers of rods situated in a vertical equilibrium position
and the upper limit of stationary configurations was determined to be the same
as that of a chain structure. The method could be expanded to take station-
ary configurations into account that were not situated in the orbit plane. This
would complicate the method and an upper limit would need be established for
this case. The main advantage of the modeling based on graph theory presented
in this article is that a broad class of formation can be treated collectively, and
that both dynamic and stationary properties can be dealt with through this
formalism.
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Appendix

A Equations of motion in three dimensions

A two degree of freedom model taking both in-plane and out-of-plane motion
into account is deduced in this appendix. The procedure is identical to the one
used for the in-plane motion in Section III, but the derivation becomes more
cumbersome due to the additional states and the interaction between in-plane
and out-of-plane motions. Denoting the out-of-plane angle ϕ, the vectors along
the rods can be written as,

ρj =



lj cos θj cosϕj

lj sin θj cosϕj

lj sinϕj


 . (40)

The relative velocity of the mass mi is expanded with an out-of-plane compo-
nent, compared to (18),

vi =



ωẋi − ωyi
ωẏi + ωxi

ωżi


 . (41)

The kinetic and the potential energies are unchanged compared to (19) and
(20). Inserting the energies including the out-of-plane motion into Lagrange’s
equation, the system can be written as,

[
M11 M12

MT
12 M22

] [
θ̈

ϕ̈

]
+

[
G1

G2

]
= 0, (42)

where the matrices can be found to be,

M11 =Esin θEcosϕG̃Esin θEcosϕ +Ecos θEcosϕG̃Ecos θEcosϕ, (43a)

M22 =Ecos θEsinϕG̃Ecos θEsinϕ +EcosϕG̃Ecosϕ,

+Esin θEsinϕG̃Esin θEsinϕ (43b)

M12 =Esin θEcosϕG̃Ecos θEsinϕ −Ecos θEcosϕG̃Esin θEsinϕ, (43c)

G1 =
(
Esin θEcosϕG̃Ecos θEcosϕ

−Ecos θEcosϕG̃Esin θEcosϕ

)(
(2I +Eθ̇)θ̇ +Eϕ̇ϕ̇

)

− 2
(
Esin θEcosϕG̃Esin θEsinϕ

+Ecos θEcosϕG̃Ecos θEsinϕ

) (
I +Eθ̇

)
ϕ̇

+ 3Esin θEcosϕG̃Ecos θEcosϕ1n, (43d)
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G2 =
(
Ecos θEsinϕG̃Ecos θEcosϕ

+Esin θEsinϕG̃Esin θEcosϕ

)(
(2I +Eθ̇)θ̇ +Eϕ̇ϕ̇

)

−EcosϕG̃EsinϕEϕ̇ϕ̇

+ 2
(
Esin θEsinϕG̃Ecos θEsinϕ

−Ecos θEsinϕG̃Esin θEsinϕ

) (
I +Eθ̇

)
ϕ̇

+ 3Ecos θEsinϕG̃Ecos θEcosϕ1n +EcosϕG̃Esinϕ1n. (43e)

The matrices Ecosϕ and Esinϕ are defined similarly to Ecos θ and Esin θ, while
Eϕ̇ is defined in the same way as Eθ̇. All parameters are collected in the

matrix G̃ = LGL, in the same way as for the in-plane motion. The equations
shows that motion in the orbit plane does not give rise to a motion out of the
plane, hence the in-plane motion compose an invariant manifold. By contrast,
the opposite is not the case. An out-of-plane motion will excite the in-plane
dynamics.

B Proof of properties

Proof of Property 1. To prove thatW , Wik = µiδik − µiµk, is positive definite,
it is used thatW is symmetric. The Sylvester Criterion [16, 7.2.5, p. 404] states
that a Hermitian is positive definite if the determinant of all upper left sub-
matrices as well as the matrix itself are positive definite. First W is rewritten
in the matrix form,

W = Λ̃− µµT (44)

where Λ̃ ∈ R
n×n is a diagonal matrix Λ̃ik = µiδik and µ = [µ1 . . . µn]

T .
The matrix determinant lemma can be used to find the determinant of the sub-
matrices. The upper left square matrices can be found by truncating Λ̃ and
µ. The truncated versions containing ℓ elements are denoted Wℓ, Λ̃ℓ ∈ R

ℓ×ℓ

and µℓ ∈ R
ℓ. The matrix determinant lemma states that det

(
A+ uvT

)
=(

1 + vTA−1u
)
detA, which, applied to the sub-matrices, leads to,

detWℓ =
(
1− µℓΛ̃

−1
ℓ µT

ℓ

)
det Λ̃ℓ =


µ0 +

n∑

j=ℓ+1

µj




ℓ∏

j=1

µj > 0. (45)

For ℓ = n the determinant of W is,

detW =

n∏

i=0

µi > 0, (46)
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which means that W is positive definite. The inverse of W can be found from
(44) using the Sherman-Morrison formula [16, 0.7.4, pp. 18-19],

W−1 = Λ̃−1 +
1n1

T
n

µ0
. (47)

Proof of Property 2. Since P has full rank andW is positive definite, it can be
concluded, using [16, 7.1.6 p. 399], that G = PWP T is symmetric and positive
definite. The last part of the property states that G−1

jk = 0 for k /∈ Nj ∧ j 6= k.

This is proved using the fact that P−1 = A, hence G−1 = ATW−1A. The
product is easily found since each column of A has no more than two non-zero
elements. Denoting the initial nodes of lj and lk by mp and mq, respectively,
the inverse matrix can be written as,

G−1
jk =

1

µj
δjk − 1

µp
δpk − 1

µj
δjq +

1

µp
δpq, (48)

assuming that mp 6= m0 and mq 6= m0. The first term represents the diagonal
of G−1. The next terms include the entries of upper and lower neighbors of lj
in the path to the root. The last term represents the situation where lj and lk
have a common upper neighbor. Hence only entries representing neighbors of
lj are different from zero in the jth column of G−1. Similar calculations show
that the property is also valid in case mp = m0 and/or mq = m0.

Proof of Property 3. First it is proved that Gjk = Mjk − MjjMkk, using the
fact that the jth row of P can be expressed by means of the sub-tree Tj as in
(6). By insertion it is seen that the first part of the product G = PWP T can
be written,

(PW )ji =

n∑

k=1

PjkWki = −
∑

k∈Tj

µkδik +
∑

k∈Tj

µkµi = −µidij + µiMjj , (49)

where dij = 1 if i ∈ Tj , and zero otherwise. The elements of G are then found,

Gjk =

n∑

i=1

(PW )ji Pki = −Mjj

∑

i∈Tk

µi +
∑

i∈Tk

µidij = Mij −MiiMjj , (50)

hence (29) is proved. The sum of the nodes in a sub-tree Tj is not affected by
the reduction, which together with (29) proves the property.
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Proof of Property 4. Denote again the nodes incident to lj by mj and mp, and
assume that mp 6= m0. The elements of G−1 are given in (48), which is also

valid for Ĝ−1 using the node values of the reduced graph. If G−1
jk = 0 then

k ∈ Nj or equivalently, j ∈ Nk. This can only be changed by the reduction if
there exists an edge q ∈ J such that q ∈ Nj and q ∈ NJ . This implies that
j ∈ NJ and k ∈ Nk, which is in contradiction to the assumption, hence the
property holds for G−1

jk = 0. The entry G−1
jk 6= 0 if j = k or k ∈ Nj (equivalent

j ∈ Nk). This neighboring relation cannot be changed by the reduction since
j, k /∈ J . The quantity G−1

jk only depends on µj and µp, which will only change
by the reduction if there exists an edge q ∈ J incident to mj or mp. This means
that q ∈ Nj and consequently j ∈ NJ , which is again in contradiction to the
assumption. Hence the property is proved for mp 6= m0. A similar argument
can be made for mp = m0.
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Decentralized control of

tethered satellite formations

using electrodynamic tethers1

Abstract

Tethered satellite formations have gained increasing attention over the last years,
since tethered formations can be advantageous for example for interferometry
missions. This paper investigates the use of electrodynamic tethers for formation
control of a broad class of formations. Actuation of the attitude dynamics is
accomplished by control of electric currents through the tethers, giving rise to
Lorentz forces along the tethers, through interaction with the magnetic field
of the Earth. Control of the currents is possible through adjustable voltage
sources situated at the satellites of the formation, providing potential differences
to the ionosphere. The paper considers formations forming a tree structure
and uses graph theory to describe these formations. Modeling of the electrical
network formed by the tethers is likewise graph-based, and the result is a very
generic model. A decentralized control algorithm is proposed such that each
satellite can generate its control signal based on its own observations and without
communicating with other satellites in the formation. The control strategy is
divided into two parts: One controller stabilizes the currents through the tethers
and another deals with attitude dynamics.

1Submitted to Journal of Guidance, Control, and Dynamics.
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I Introduction

Tethered satellite formations are interesting in connection with several tasks in
space. Recently, tethered interferometers have received massive attention due
to the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) con-
cept proposed by NASA [1]. Tethered satellite formations are also proposed in
several other connections, for example for elevator systems used at space sta-
tions and atmospheric probes [2]. A large variety of different formations have
been investigated. The most examined formation is a chain structure. For an
N-body chain structure the equations of motion were investigated in [3, 4] and
a simple relation between the in-plane and the out-of-plane natural frequencies
was stated. In [5] the stationary configurations situated in the orbit plane for
an N-body chain were found and an upper limit on the number of possible con-
figurations was stated. The investigation was expanded in [6] to include general
stationary configurations taking both the in-plane and the out-of-plane dimen-
sions into account. Recently, we have studied the dynamics and the stationary
configurations of a general tree structure [7], which can be seen as several con-
nected chains. More complicated formations have also been considered, mainly
in connection with spinning satellite formations. The so-called hub-and-spoke
formation is a formation consisting of a parent satellite to which several sub-
satellites are tethered. In the case where the sub-satellites furthermore are
tethered in a ring, the formation is denoted a closed-hub-and-spoke formation.
The stability properties of these formations, spinning around different axes, were
investigated in [8]. Another spinning formation is a double pyramid formation.
This formation consists of a number of satellites tethered in a plane, and two
anchor satellites tethered at each side of the formation. The formation spins
around an axis through the anchor satellites. Such a formation was investigated
for its stability properties in [8] and [9].

In [10, 11] a decentralized control strategy was developed for the in-plane dy-
namics chain structure include three satellites. The control design considered
the attitude of each satellite and used reaction wheels situated at each satellite
to actuate the system. The strategy was decentralized in the sense that each
satellite generated a control signal based on its own orientation and the spinning
rate of the formation. Ref. [12] investigated the control of a three satellite teth-
ered interferometer forming a chain structure. An open-loop control strategy
was developed for this spinning formation to change the plane of rotation. The
strategy applied electrical thrusters at two of the three satellites and solved the
attitude equations analytically by means of a perturbation method.

The use of electrodynamic tethers is a well established concept when considering
single tether systems. The main interest in this connection is the systems ability
to actuate the orbit motion. Missions have been flown to investigate the concept
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[13] and several control strategies have been proposed both for the orbital motion
[14] and the attitude motion [15, 16, 17]. The investigations have shown that, in
the case where only the current through the tether is controlled, the system is
under-actuated. It has also been shown, that it is not possible to stabilize
both in-plane and out-of-plane motion at an equilibrium point, and several
articles have therefore studied the possibility of stabilizing periodic solutions.
Utilizing magnetic fields for formation control is also the idea behind a so-called
electromagnetic formation flight (EMFF). In an EMFF system each satellite
of the formation is generating a magnetic field and the formation is controlled
through the interconnection of these fields. In [18] an EMFF was investigated
as an alternative to a tethered formation.

This article proposes the use of electrodynamic tethers in connection with the
control of tethered satellite formations. A main contribution of this article is
a generic formulation of the electrical network formed by the formation when
using electrodynamic tethers. Combined with a corresponding generic model
of the in-plane attitude motion, an overall nonlinear model is stated for the
system. The electrical circuit is closed via the ionosphere through a phantom
loop. These connections to the ionosphere are modeled by resistors with non-
linear current-voltage characteristics. The current in the electrical network is
controlled by adjustable voltage source placed at each satellite determine the
current flow to the ionosphere. The tether currents give rise to forces acting
along the tether through interactions with the Earth’s magnetic field. These
forces are used to actuate the attitude motion. The modeling covers formations
forming tree structures. Another contribution is a decentralized control strat-
egy applicable for the system. The strategy is decentralized in the sense that
each satellite can apply a control signal based on own observations and without
communication between satellites. The control design is obtained in two steps.
First, a control law stabilizes the current along the tethers using the voltage
sources at the satellites. Second, a control law for the attitude dynamics stabi-
lizes the formation in a desired shape. Both the model and the control laws are
based on graph theoretical quantities describing the formation structure and the
electrical circuit, which occur as parameters in the system descriptions. This
enables both the dynamics and the control laws to cover a variety of different
models.

The remaining part of this article is organized as follows. Section II treats the
modeling of the system. The graph description is introduced and the unforced
dynamics are briefly considered. The electrodynamic actuation of the system
is examined and the modeling of the electrical network formed by the tethers
is treated in detail. Section III treats the control design for the system. A
control law providing asymptotic stability of the tether currents is introduced
and the motion control is treated. In both cases the constraints to guarantee a
decentralized control configuration are stated. The control design is exemplified
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using a Y-formation in Section IV. Finally, the main conclusions of the work
are stated in Section V.

II Model

The model presented in this section considers the attitude motion in the or-
bit plane of a tethered satellite formation. The in-plane motion is actuated
by means of electrodynamic tethers, while the out-of-plane motion is assumed
stabilized by another set of actuators. This assumption is mainly introduced
to avoid an under-actuated system occurring when a single current through a
tether, controls both the in-plane and the out-of-plane motion. The modeling
is based on two graphs: One describing the interconnection of satellites in the
formation and another describing the electrical circuit formed by the electro-
dynamic tethers. The formations under consideration form a tree structure.
This assumption simplifies the equations of motion, since each tether repre-
sents a single degree of freedom and algebraic constraints around the cycles are
avoided.

a) Graph theoretical description

The formation under consideration consists of n tethers. Since the formation is
assumed to form a tree structure the number of satellites in the formation equals
n + 1. The satellites are modeled as point masses denoted mi for i = 0, . . . , n
and the tethers are assumed massless and of constant length lj for j = 1, . . . , n.
The total mass of the formation is denoted m =

∑
i mi and the relative mass

of each satellite is µi = mi

m . The formation is described by a directed graph
where the nodes represent the satellites and the edges represent the tethers.
The notations mi and lj are reused to refer to the nodes and edges, respectively.
The formation is described relative to the node m0 called the root of the tree,
which can be chosen arbitrarily. Each edge is assigned a direction and it is
assumed, without loss of generality, that all edges are directed away from the
root m0. Furthermore, the edges are ordered such that the edge lj is connected
to mj and directed towards mj . A directed graph with n edges and n + 1
nodes can be described by an incidence matrix B ∈ R

(n+1)×n. Each column of
B represents an edge of the graph. The elements of the incidence matrix are
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defined as,

Bij =





1 if lj is connected to and pointing away from mi

−1 if lj is connected to and pointing towards mi

0 if lj is not connected to mi

(1)

This definition is general and can also be applied to directed graphs not forming
a tree structure. Assuming a tree structure, the incidence matrixB has full rank
and all paths along the tethers are unique. The paths from the nodes mi for
i = 1, . . . , n to the root m0 are described by the path matrix P ∈ R

n×n with
elements,

Pji =





1 if lj is in the path from mi to m0 directed towards m0

−1 if lj is in the path from mi to m0 directed towards mi

0 if lj is not in the path from mi to m0

(2)

Figure 1 shows a simple Y-formation consisting of five satellites connected by

m0

m1

m2

m3 m4

l1

l2

l3 l4

Figure 1: Y-formation with five satellites.

four tethers. The corresponding matrices are given as,

B =




1 0 0 0
−1 1 0 0
0 −1 1 1
0 0 −1 0
0 0 0 −1



, P =




−1 −1 −1 −1
0 −1 −1 −1
0 0 −1 0
0 0 0 −1


 . (3)

b) Equations of motion

The derivation of the unforced equations of motion is treated in detail in [7]
and will therefore only be briefly described here. The center of mass (CM) of
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the formation is assumed to follow a circular orbit with orbital rate ω. The
formation is described in an orbit frame centered at the CM, with its x-axis
directed along the position vector of the CM relative the Earth, and the y-
axis is in the direction of the orbit velocity. The orientation of each tether is

+

b

bC

bC

bC

bC

CM

m0

m1

m2

m3

m4

r0

ρ1

ρ2

ρ3

ρ4

θ1

θ2

θ3

θ4

x

y

Figure 2: A tethered satellite formation situated in the orbit plane.

described by an angle θj for j = 1, . . . , n defined relative to translations of the
orbit frame as shown in Fig. 2. These angles are chosen as the generalized
coordinates of the system. A vector ρj is introduced along each tether,

ρj =

[
lj cos θj
lj sin θj

]
. (4)

The basic idea of the derivation is to describe the position of each satellite by
a sum of the vectors ρk following the path from satellite m0. These sums can
be found from the path matrix P . For the formation in Fig. 2 the position of
m4 is found as the sum of ρ1, ρ2 and ρ4, which corresponds to the non-zero
elements of the fourth column of the path matrix in (3). The position vector
r0 describing m0 relative to the CM can be determined from the weighted sum
defining the CM, and consequently the position of all satellites relative to the CM
can be calculated. The Lagrangian of the system is found and using Lagrange’s
equation the equations of motion occurs as,

Mθ̈ + G =
τ

mω2
, (5)

where θ ∈ R
n is a vector of the angles θj and τ ∈ R

n comprise the generalized

forces. The derivatives of the generalized coordinates are denoted θ̇. When
considering circular orbits it is common to scale time by the orbital rate, creating
a non-dimensional time variable. The derivatives are taken with respect to this
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non-dimensional time. To describe the attitude motion of the formation the
derivatives are taken relative to the orbit frame. The quantities M ∈ R

n×n

and G ∈ R
n are nonlinear functions of the generalized coordinates and velocities

given as,

M = EsinGEsin +EcosGEcos, (6)

G = (EsinGEcos −EcosGEsin)
(
2In +Eθ̇

)
θ̇ + 3EsinGEcos1n, (7)

where In is an identity matrix of size n × n and 1n denotes a vector of size n
with one at all entries. The diagonal matrices Ecos ∈ R

n×n and Esin ∈ R
n×n

have cos θj and sin θj , respectively, in diagonal entry j. The diagonal matrix

Eθ̇ ∈ R
n×n is defined similarly with θ̇j in diagonal entry j. The symmetric

matrix G ∈ R
n×n collects all the parameters of the unforced dynamics as well

as the formation topology. It can be written from the path matrix P as,

G = LPWP TL, (8)

where L ∈ R
n×n is a diagonal matrix with lj in diagonal entry Ljj . The elements

Wik of the matrix W ∈ R
n×n is based on the relative masses,

Wik = µiδik − µiµk, (9)

where δik denotes Kronecker’s delta.

c) Electrodynamic actuation

The electrical circuit formed by the tethers is closed via phantom loops through
the ionosphere. This means that each satellite has the ability to exchange elec-
trons with the plasma either through collectors or active electron emitters. The
currents through the tethers interact with the magnetic field of the Earth and
give rise to Lorentz forces acting along the tethers. These forces are utilized
to actuate the attitude dynamics. The distributed Lorentz force acting along a
unit section of tether k is,

Fk =
αk

lk
ρk ×Be for k = 1, . . . , n, (10)

where αk is the current through the tether and Be is the magnetic field vector.
Since only the in-plane motion is under consideration it is assumed that Be is
perpendicular to the orbit plane with magnitude Bz. The generalized force τj
can be found by projecting the total Lorentz force onto the generalized coordi-
nate θj . The Lorentz forces acting along the tethers are found by integrating
the distributed force along the tethers, and the total force affecting the system
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is the sum over all tethers. Consequently, the generalized forces are,

τj =

n∑

k=1

∫ lk

0

F T
k

∂ρk
∂θj

s

lk
ds =

∫ lj

0

F T
j

∂ρj
∂θj

s

lj
ds. (11)

The right-hand side reflects that the sum only contains one term since ρj only
depends on θj . Inserting (10) into (11) the generalized force is shown to be
proportional to the tether current,

τj = −1

2
l2jBzαj . (12)

Collecting the currents in a vector α ∈ R
n, α = [α1 . . . αn]

T , the generalized
forces can be written as,

τ

mω2
= Λα, (13)

where Λ ∈ R
n×n is a constant diagonal matrix introduced as Λ = − 1

2
Bz

mω2L
2.

The total system description can be written as,

ẋ = f(x) + Γα, (14)

where x = [θ θ̇]T is the state vector and Γ = [0n×n Λ]T is the input matrix.
The function f(x) can be written as,

f(x) =

[
θ̇

M
−1

G

]
(15)

d) Electrical circuit description

The network of electrodynamic tethers resembles an electrical circuit, and it is
natural to model this circuit using graph theory to maintain the generic system
description. The formulation presented here is based on [19, chap. 2], with the
expansion of including resistors with nonlinear current-voltage characteristics.

The first step in the modeling is to consider the electrical circuit of a single
electrodynamic tether. An equivalent circuit is shown in Figure 3a. The circuit is
described in detail in [20]. The voltage W induced along the tether occurs when
the system is passing through the magnetic field. By exchanging electrons with
the ionosphere the current I can flow through the tether. The resistances RSH+

and RSH− are associated with collecting and emitting electrons, respectively,
and obey a quite complicated current-voltage relation due to Debye shield and
other phenomena. The phantom loop through the ionosphere is characterized
by the resistance RP , while the tether resistance is RT . According to [20] the
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−
+

W

RT

RSH+

RSH−

RP

(a) Equivalent circuit

−
+

wj

Rj

Vi

− +

ui

Vj

− +

uj

(b) Controlled circuit

Figure 3: Equivalent electric circuits of a single tether system.

resistance RP is negligible compared to the other resistances and is therefore
omitted in this work. Consequently, the ionosphere can be regarded as having a
single potential, and therefore be represented by a single node in the electrical
circuit.

To control the currents in the tethers, each satellite can generate an adjustable
potential difference ui relative to the ionosphere. This leads to the controlled
circuit shown in Fig. 3b. A resistor with a nonlinear current-voltage character-
istic is placed in series with ui. The voltage over this resistor is given as Vi(βi),
where βi is the current through the resistor. It is assumed that Vi(βi) is strictly
increasing. The nonlinear current-voltage relations are collected in the vector
function V , which have a special structure since Vi only depends on βi. This
resistor can be seen as a combination of RSH+ and RSH−, since the system is
designed for currents to be able to flow both to and from the ionosphere at all
satellites. The controlled voltages are collected in u ∈ R

n+1 and the currents
βi in β ∈ R

n+1. The induced voltages wj and the resistances Rj of the tethers
are collected in a vector w ∈ R

n and a diagonal matrix R ∈ R
n×n.

When using graph theory to model electrical circuits, junctions are represented
by nodes and the connections between them by edges. The satellites of the
formation can be seen as junctions in the circuit and the graph describing the
circuit can therefore be written as an expansion of the graph describing the
tethered formation. The set of edges is expanded by n + 1 edges, representing
the connections to the ionosphere at each satellite. The edges are arranged such
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that the first n edges coincide with the edges representing tethers, while edge
n+1 represents the connection at m0, the edge n+2 the connection at m1, and
so on until edge 2n + 1, which represents the connection at mn. The graph is
expanded by a single node representing the ionosphere and the total number of
nodes becomes n+2. The first n+1 nodes represent the satellites and the last
node represents the ionosphere. Without loss of generality, the edges connected
to the ionosphere are directed away from the ionosphere. This choice leads to
an incidence matrix Bc ∈ R

(n+2)×(2n+1) for the circuit graph given as,

Bc =

[
B −In+1

0T
n 1T

n+1

]
, (16)

where the elements are defined as in (1). The vector 0n ∈ R
n has zero at all

entries. The graph described by Bc is connected and its nullity is therefore
n according to [19, Def. 1.12 p.11]. The cycles of Bc correspond to the loops
of the electrical circuit. The directed cycles can be described by the matrix
Qc ∈ R

n×(2n+1). Each row of Qc describes a cycle of the graph and its elements
are given as,

(Qc)kj =





1 if edge j is included in cycle k in the same

direction as the cycle

−1 if edge j is included in cycle k in the opposite

direction as the cycle

0 if edge j is not included in cycle k

(17)

The cycles of the graph are not uniquely determined, butQc contains a complete
set of linear independent cycles. The matrix Qc can be found from the right
nullspace of Bc,

BcQ
T
c = 0(n+2)×n. (18)

A set of linear independent cycles can be chosen such that each tether is only
included in one cycle. This is done by assuming that left n × n sub-matrix of
Qc is an identity matrix. Using this structure, Qc can be found by inserting
(16) into (18),

Qc =
[
In BT

]
. (19)

The currents and potential differences along the branches of the network are
collected in i and v, respectively. In accordance with the ordering of the edges
i can be written as,

i =

[
α

β

]
, (20)

The current along a branch can be seen as a sum with a term for each loop
including the branch. Consequently, all currents in the network can be written
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as functions of these currents called the loop currents i ∈ R
n. The loop currents

fulfills,

i = QT
c im. (21)

Combining (19), (20), and (21) it is seen that the loop currents equal the tether
currents, im = α, which is a consequence of the fact that each tether is only
included in one loop. Furthermore, it is seen that,

β = Bα, (22)

which shows that the net tether current at a satellite is transferred along the
branch to the ionosphere.

The circuit equations is found from Kirchhoff’s voltage law, which can be for-
mulated from the cycle matrix,

Qcv = 0n. (23)

The potential differences along the branches are a combination of the voltage
sources and voltages drops over the resistors, hence v is,

v =

[
w +Rα
u+ V (β)

]
. (24)

Inserting this into Kirchhoff’s law (23) utilizing the structure of Qc stated in
(19) leads to the circuit equations,

Rα+BTV (β) = −w −BTu. (25)

To illustrate the setup consider the simple two-tether chain in Fig. 4. The

Loop 1 Loop 2

u0

β0

−
+

V0(β0)

w1
α1

+ −
R1

u1

β1

−
+

V1(β1)

w2
α2

+ −
R2

u2

β2

−
+

V2(β2)

Figure 4: Equivalent electrical circuit of a two-tether formation.
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incidence and the cycle matrices are,

B =




1 0
−1 1
0 −1


 , Qc =

[
1 0 1 −1 0
0 1 0 1 −1

]
. (26)

The direction of the two cycles are shown in Fig. 4. In this example (22) gives,

β =




1 0
−1 1
0 −1


α =




α1

α2 − α1

−α2


 , (27)

which is seen to describe Kirchhoff’s current law for the tree nodes representing
the satellites of the formation.

III Control design

The control design is divided into two parts. The solutions to both parts is
decentralized in the sense that the control signal applied at a satellite depends
only on quantities, that can be measured from the same satellite. A control law
is first designed to stabilize the tether currents at a desired level. The resulting
closed-loop system will be the actuator for attitude control. The challenge in
this problem is to control the n currents with the n+ 1 voltage sources, where
each current depends on all voltage sources. The second part of the control
design will be a control law for the attitude motion.

a) Control of tether currents

The tether currents are determined by the circuit equation found in the previous
section,

Rα +BTV (β) = −w −BTu. (28)

The induced voltage w will depend on the magnetic field vector and the velocity
of the formation. It will not be difficult to obtain an estimate ŵ of w and have
this available at each satellite in the formation. Using this estimate, w can be
compensated for using the input,

u =
(
B+
)T
ŵ − ū (29)

where ū is a new input. The matrix B+ is the left pseudoinverse of B, which
is guaranteed to exist since B has full rank. In general the inverse B+ does
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not have a sparse structure, hence the compensation (29) requires that the
formation topology is known. Assuming a perfect estimate ŵ = w, the system
can be written as,

Rα +BTV (β) = −BT ū. (30)

To stabilize the tether currents the following control law based in integral action
is proposed,

˙̄u =KiB (α−αd) , (31)

whereKi ∈ R
(n+1)×(n+1) is a positive definite diagonal matrix,Ki > 0, and the

vector αd ∈ R
n is the desired loop currents. To find the closed-loop description

the derivative of (30) is needed,

Rα̇+BT ∂V

∂β
Bα̇ = −BT ˙̄u, (32)

where it is utilized that the vector function V (β) can be written as V (Bα) using
(22), hence the derivative ∂V

∂βBα̇. The Jacobian has a diagonal structure since
Vi only depends on βi, and using the assumption that Vi is strictly increasing
the Jacobian becomes positive definite. Since B has full rank, BT ∂V

∂βB and

BTKiB are positive definite. Inserting the control law (31) in (32) the closed-
loop actuator dynamics are,

α̇ = −
(
R+BT ∂V

∂β
B

)−1

BTKiB (α−αd) . (33)

The stability of this nonlinear closed-loop system can be investigated using the
Lyapunov function V = 1

2 (α−αd)
T
(α−αd), which has the negative definite

time derivative,

V̇ = − (α−αd)
T

(
R +BT ∂V

∂β
B

)−1

BTKiB (α−αd) . (34)

Hence the closed-loop system will converge asymptotically towards αd

To realize that the control law (31) can be implemented in a decentralized way,
the factor Bα is considered. According to (22) this quantity equals the currents
in the branches connected to the ionosphere β, and the element βi represents
a current, that can be measured at satellite i. The input ui represents in the
same way a voltage, which can be applied at satellite i. The diagonal structure
of the controller gain Ki ensures that the measurements are kept separate, and
that the control signal ui only depends on the measurement of βi. To use the
introduced actuator dynamics in a decentralized manner, it is advantageous to
be able to connect the reference signal to measurements at the satellites. This
can be done by introducing the new reference signal βd = Bαd, again using
(22). Using βd, the desired tether currents are expressed using the current
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exchanged with the ionosphere at each satellite. The reference signal βd is,
however, an over-representation of the tether currents and must be subjected to
the constraint,

1T
n+1βd = 0. (35)

This constraint states that the net current to the node representing the iono-
sphere must be zero. In a practical context one could argue that this is actually
not necessary, but that the constraint is reflecting the way the circuit is mod-
eled. The decentralized current stabilization is shown in Figure 5. The control

uk

βk

−
+

Vk(βk)

− +
βdk

(Ki)k
∫

Figure 5: Current stabilizing control scheme.

scheme is stabilizing the current through the nonlinear resistor based on a mea-
surement of the same current. Hence the control scheme can be seen as a way of
implementing controllable current sources based on adjustable voltage sources,
and in that way controlling the current flow to the ionosphere.

In summary the total actuator dynamics can be written as,

α̇ = fa(α) + ga(α)βd (36)

where the nonlinear functions fa and ga are given as,

fa = −
(
R+BT ∂V

∂β
B

)−1

BTKiBα, (37)

ga =

(
R+BT ∂V

∂β
B

)−1

BTKiβd. (38)

b) Decentralized formation control

Turning to attitude control, it is assumed that each satellite can measure its
orientation in the orbit frame and the orientations θj of the tethers incident
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to the satellite. Furthermore, it is assumed that the time derivatives of the
measurements are available. The control design is based on a system dynamics
of the form,

ẋ = f(x) + Γα. (39)

The measurements y ∈ R
2n+2 of the system are,

y = Cx =

[
B 0

0 B

]
x. (40)

The elements yi and yn+1+i for i = 1, . . . , n+1 represent measurements at each
satellite. The first yi is a linear combination of the orientation of the tethers
connected to the satellite. The linear combination is determined by the direction
of the edges representing the tethers. Outgoing edges contribute with positive
signs in the linear combination, and ingoing edges with negative signs. This
structure of the measurement originates from the definition of B in (1) and
guarantees that the signal yi is measurable from satellite i. The measurement
yn+1+i equals ẏi. The definition of the measurements are quite restrictive, even
in a decentralized setup. The definition has, however, the advantage of intro-
ducing the incidence matrix B in output matrix C and thereby connecting the
measurements with the satellites instead of the tethers. The proposed feedback
law is,

βd =Ky =
[
Kp Kd

]
y, (41)

where the matrices Kp,Kd ∈ R
(n+1)×(n+1) are diagonal to ensure the decen-

tralized structure. The total control setup is illustrated in Fig. 6.
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Figure 6: Block diagram of the total control scheme.

The constraint on the reference signal βd imposes some restrictions in the choice
of controller gains. To investigate these, the feedback law (41) is combined with
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the constraint in (35),
[
1T
n+1KpB 1T

n+1KdB
]
x = 0. (42)

Using that 1T
n+1B = 0T

n , it is seen that the constraint can be fulfilled by using
the same controller gains at all local controllers. This imposes the structures
Kp = kpIn+1 and Kd = kdIn+1 on the controller gains. In a practical context
this constraint can lead to some difficulties, since it can be hard to guarantee
identical gains in all sub-controllers.

The control design is mainly presented to show that a decentralized control
strategy is possible. It could be improved in several ways, for example by
using the measurements in a less restrictive way. Furthermore, a full or partial
observer design could by applied at each satellite, enabling a less restrictive
control scheme, while maintaining the decentralized structure.

IV Example

Consider as an example an Y-formation shown in Figures 1 and 2. The orbit is
assumed to be equatorial, and the magnetic field constant and perpendicular to
the orbit plane, when using a non-tilted dipole to model the magnetic field of
the Earth. The constant Λ can then be written as,

Λ = −1

2

1

m

µm

µ
L2 (43)

where µm = 7.79 × 1015 Nm2A−1 is the strength of the magnetic field and
µ = 3.986 × 1014 m3s−1 is the standard gravitational parameter of the Earth.
Let all tethers have a length of 5 km and a resistance of 55.7 × 10−3 Ω/m.
The resistances modeling the ionosphere connections are assumed to follow the
current-voltage relation Vi(βi) = 150 sign(βi)β

2
i , where sign denotes the sign

function. This choice is inspired by the characteristics of a spherical electron
collector presented in [20]. The relation shows that the characteristics for col-
lecting and emitting electrons are equal. This is a conservative assumption since
the emitting of electrons is connected with a much lower resistance in reality.
The relation Vi(βi) is not strictly increasing as required for stability, but since
∂Vi

∂βi
= 0 only for βi = 0 the stability conclusions are not affected. The masses are

chosen as m0 = m1 = 89.1 kg, m2 = 200 kg, and m3 = m4 = 50 kg. The masses
of the satellites are chosen such that the configuration θ∗ = [0◦ 0◦ 135◦ 135◦]T

is stationary, and the system will operate around this configuration. The con-
troller gain Ki must be chosen to obtain actuator dynamics which allows the
desired performance of the overall controller. The gain is chosen as,

Ki = 5000 I5
V

As
. (44)
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Figure 7 shows the tether currents and the control voltages of a simulation of
actuator dynamics. The desired currents are αd = [1 − 0.2 − 0.8 0.3]T . It is
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Figure 7: Simulation of the actuator dynamics.

seen that the system can stabilize the tether current within a tenth of an orbit.

Figure 8 shows two simulations, one of an large attitude maneuver and another
of an attitude correction. The control gains used in the simulations are shown in
Table 1. During the maneuver shown in Fig. 8a the tether currents exceed the

Maneuver Correction

kp −20 A
rad −10 A

rad

kd −10 A
rad/s −5 A

rad/s

Ki 104 I5
V
As 5000 I5

V
As

Table 1: Controller gains for simulation in Fig. 8

level, which are feasible to drive through tethers of this length. Consequently
the control voltages are very large. Figure 8b shows that minor attitude cor-
rection are feasible and can be done within about one orbit. This simulation is
carried out around the same stationary configuration θ∗, and to emphasize the
convergence properties, deviation in states are shown. Combined, the simula-
tions show that additional actuators must be utilized when making large orbit
maneuvers, however, the electrodynamics tethers are capable of operating the
system around an open-loop stationary configuration.
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(a) Maneuver simulation
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(b) Correction simulation

Figure 8: Simulation of Y-formation.

V Conclusions

This article has investigated the use of electrodynamic tethers for formation
control of tethered satellite formations. The main contribution was a generic way
of modeling the electrical circuit formed by the tethers. The circuit included the
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resistance of the tethers, the nonlinear current-voltage characteristics connected
with the exchange of electrons with the ionosphere, and controllable voltage
sources situated at the satellites. Combining this with a previously investigated
generic formulation of the attitude dynamics gave an actuated system, which is
valid for all formations forming a tree structure. The model was restricted to
the motion in the orbit plane and tethers were modelled as rigid rods. Based on
the model a generic control law was designed, using the formation structure as
a parameter. The control law was decentralized in the sense that each satellite
can apply a control signal without communication with other satellites in the
formation. This feature makes the strategy suited for large formations. The
control law was divided into one part stabilizing the tether currents and another
controlling the attitude dynamics. The generic formulation was made possible
by the use of graph theory, which was employed to describe both the formation
structure and the electrical circuit.

An interesting extension of the control design would be to investigate the ten-
sion along the tethers. In the case where the tension along the tethers can
be guaranteed by the controller, it would be interesting to investigate control
strategies where the flexibility of the tethers was taken into account. Extending
the model to include spinning satellite formations could also be of interest in
this context, since they provide a centrifugal force to induce tension along the
tethers.
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