474 research outputs found

    Physiological characterization of secondary metabolite producing Penicillium cell factories

    Get PDF
    Abstract Background Penicillium species are important producers of bioactive secondary metabolites. However, the immense diversity of the fungal kingdom is only scarcely represented in industrial bioprocesses and the upscaling of compound production remains a costly and labor intensive challenge. In order to facilitate the development of novel secondary metabolite producing processes, two routes are typically explored: optimization of the native producer or transferring the enzymatic pathway into a heterologous host. Recent genome sequencing of ten Penicillium species showed the vast amount of secondary metabolite gene clusters present in their genomes, and makes them accessible for rational strain improvement. In this study, we aimed to characterize the potential of these ten Penicillium species as native producing cell factories by testing their growth performance and secondary metabolite production in submerged cultivations. Results Cultivation of the fungal species in controlled submerged bioreactors showed that the ten wild type Penicillium species had promising, highly reproducible growth characteristics in two different media. Analysis of the secondary metabolite production using liquid chromatography coupled with high resolution mass spectrometry proved that the species produced a broad range of secondary metabolites, at different stages of the fermentations. Metabolite profiling for identification of the known compounds resulted in identification of 34 metabolites; which included several with bioactive properties such as antibacterial, antifungal and anti-cancer activities. Additionally, several novel species–metabolite relationships were found. Conclusions This study demonstrates that the fermentation characteristics and the highly reproducible performance in bioreactors of ten recently genome sequenced Penicillium species should be considered as very encouraging for the application of native hosts for production via submerged fermentation. The results are particularly promising for the potential development of the ten analysed Penicillium species for production of novel bioactive compounds via submerged fermentations

    HPLC-HRMS Quantification of the Ichthyotoxin Karmitoxin from Karlodinium armiger

    Get PDF
    Being able to quantify ichthyotoxic metabolites from microalgae allows for the determination of ecologically-relevant concentrations that can be simulated in laboratory experiments, as well as to investigate bioaccumulation and degradation. Here, the ichthyotoxin karmitoxin, produced by Karlodinium armiger, was quantified in laboratory-grown cultures using high-performance liquid chromatography (HPLC) coupled to electrospray ionisation high-resolution time-of-flight mass spectrometry (HRMS). Prior to the quantification of karmitoxin, a standard of karmitoxin was purified from K. armiger cultures (80 L). The standard was quantified by fluorescent derivatisation using Waters AccQ-Fluor reagent and derivatised fumonisin B1 and fumonisin B2 as standards, as each contain a primary amine. Various sample preparation methods for whole culture samples were assessed, including six different solid phase extraction substrates. During analysis of culture samples, MS source conditions were monitored with chloramphenicol and valinomycin as external standards over prolonged injection sequences (>12 h) and karmitoxin concentrations were determined using the response factor of a closely eluting iturin A2 internal standard. Using this method the limit of quantification was 0.11 μg·mL−1, and the limit of detection was found to be 0.03 μg·mL−1. Matrix effects were determined with the use of K. armiger cultures grown with 13C-labelled bicarbonate as the primary carbon source

    Clostridium difficile Infection and Proton Pump Inhibitor Use in Hospitalized Pediatric Cystic Fibrosis Patients

    Get PDF
    Children with cystic fibrosis (CF) often take proton pump inhibitors (PPIs), which helps improve efficacy of fat absorption with pancreatic enzyme replacement therapy. However, PPI use is known to be associated with Clostridium difficile-(C. diff-) associated diarrhea (CDAD). We retrospectively evaluated the incidence of C. diff infection from all pediatric hospital admissions over a 5-year period at a single tertiary children's hospital. We found significantly more C. diff-positive stool tests in hospitalized patients with CF compared to patients with no diagnosis of CF. However, use of a PPI was not associated with an increased risk of CDAD in hospitalized CF patients. In summary, C. diff infection is more common in hospitalized pediatric CF patients although PPI use may not be a risk factor for CDAD development in this patient population
    corecore