42 research outputs found

    Secretion of functional human enzymes by Tetrahymena thermophila

    Get PDF
    BACKGROUND: The non-pathogenic ciliate Tetrahymena thermophila is one of the best-characterized unicellular eucaryotes used in various research fields. Previous work has shown that this unicellular organism provides many biological features to become a high-quality expression system, like multiplying to high cell densities with short generation times in bioreactors. In addition, the expression of surface antigens from the malaria parasite Plasmodium falciparum and the ciliate Ichthyophthirius multifiliis suggests that T. thermophila might play an important role in vaccine development. However, the expression of functional mammalian or human enzymes remains so far to be seen. RESULTS: We have been able to express a human enzyme in T. thermophila using expression modules that encode a fusion protein consisting of the endogenous phospholipase A(1 )precursor and mature human DNaseI. The recombinant human enzyme is active, indicating that also disulfide bridges are correctly formed. Furthermore, a detailed N-glycan structure of the recombinant enzyme is presented, illustrating a very consistent glycosylation pattern. CONCLUSION: The ciliate expression system has the potential to become an excellent expression system. However, additional optimisation steps including host strain improvement as wells as measures to increase the yield of expression are necessary to be able to provide an alternative to the common E. coli and yeast-based systems as well as to transformed mammalian cell lines

    Engineering Yarrowia lipolytica to Produce Glycoproteins Homogeneously Modified with the Universal Man3GlcNAc2 N-Glycan Core

    Get PDF
    Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as “generally recognized as safe.” Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man3GlcNAc2 structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man5GlcNAc2 and GlcMan5GlcNAc2 glycans, and to a lesser extent with Glc2Man5GlcNAc2 glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man3GlcNAc2 structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man3GlcNAc2), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans

    Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Get PDF
    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a ‘selfish’ model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

    MyCartis NV

    No full text

    Glycome mapping on DNA sequencing equipment

    No full text
    corecore