39 research outputs found

    Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    Get PDF
    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

    Factors That Drive Peptide Assembly and Fibril Formation: Experimental and Theoretical Analysis of Sup35 NNQQNY Mutants

    Full text link
    Residue mutations have substantial effects on aggregation kinetics and propensities of amyloid peptides and their aggregate morphologies. Such effects are attributed to conformational transitions accessed by various types of oligomers such as steric zipper or single β-sheet. We have studied the aggregation propensities of six NNQQNY mutants: NVVVVY, NNVVNV, NNVVNY, VIQVVY, NVVQIY, and NVQVVY in water using a combination of ion-mobility mass spectrometry, transmission electron microscopy, atomic force microscopy, and all-atom molecular dynamics simulations. Our data show a strong correlation between the tendency to form early β-sheet oligomers and the subsequent aggregation propensity. Our molecular dynamics simulations indicate that the stability of a steric zipper structure can enhance the propensity for fibril formation. Such stability can be attained by either hydrophobic interactions in the mutant peptide or polar side-chain interdigitations in the wild-type peptide. The overall results display only modest agreement with the aggregation propensity prediction methods such as PASTA, Zyggregator, and RosettaProfile, suggesting the need for better parametrization and model peptides for these algorithms

    Comparative thermal biology and depth distribution of largemouth bass (Micropterus salmoides) and northern pike (Esox lucius) in an urban harbour of the laurentian great lakes

    No full text
    Understandinghowindividuals are distributed in space and time, as well ashowthey interact with dynamic environmental conditions, represent fundamental knowledge gaps for many fish species. Using acoustic telemetry tags, we monitored the temperatures and depths used by northern pike (Esox lucius L., 1758) and largemouth bass (Micropterus salmoides (Lacepède, 1802)) in Toronto Harbour (Lake Ontario). Northern pike and largemouth bass had similar thermal experiences throughout the year, except during summer, when northern pike were observed in cooler waters than largemouth bass. Both species used different depths throughout the year, with northern pike occupying deeper depths. Statistical modelling indicated that depth usage was influenced by all variables (season, species, and body size) and interactions between them, whereas thermal preferences were influenced by the main effects and interactions between species:season and species: body size. Both species were observed at temperatures warmer than those in the vicinity of nearby telemetry stations, but as station temperatures exceede

    Pressure sensor calibrations of acoustic telemetry transmitters

    No full text
    Abstract Background Acoustic transmitters are widely used to obtain information on the spatial ecology of fish and other aquatic animals. Some transmitters contain pressure sensors to estimate depth, which are factory-calibrated before being sold and have a specified range of error. Our goal was to assess the accuracy of these pressure sensors and the factory calibrations to assess whether researchers should conduct additional calibrations prior to use in the field. To evaluate error, we conducted calibrations on ten acoustic transmitters with pressure sensors (obtained from Vemco-Amirix Ltd.) both in the laboratory (pressure chambers at Hammond Bay Biological Station and Carleton University) and in the field (based on lowering tags to known depths in Toronto Harbour and Experimental Lakes Area). Slopes, intercepts, and R 2 values of researcher-calibrated sensors were compared to the factory-calibrated values to contrast calibration methods and identify directional biases. To estimate the effects of temperature on sensor performance, we calibrated the same sensors at varying temperatures and compared slopes, intercepts, and R2 values. Finally, we evaluated external effects (i.e., water temperature, salinity, and atmospheric pressure) on sensor output through simple modeling exercises to better understand potential sources of error. Results A significant difference was found among the slopes and R 2 values of the four calibration events, whereas no difference was found among the intercepts. There was also a significant effect of calibration water temperature on slopes, intercepts, and R 2 values. External effects should be taken into consideration when interpreting biological data as they have an effect on hydrostatic pressure thereby affecting the reported depths (1.77 m shallower to 6.47 m deeper than standard conditions). Conclusions Nonetheless, we did not find sufficient evidence to support the need for additional calibrations beyond those provided by the manufacturer as they did not markedly increase the accuracy of depth estimates
    corecore