209 research outputs found
Facilitated diffusion of DNA-binding proteins: Simulation of large systems
The recently introduced method of excess collisions (MEC) is modified to
estimate diffusion-controlled reaction times inside systems of arbitrary size.
The resulting MEC-E equations contain a set of empirical parameters, which have
to be calibrated in numerical simulations inside a test system of moderate
size. Once this is done, reaction times of systems of arbitrary dimensions are
derived by extrapolation, with an accuracy of 10 to 15 percent. The achieved
speed up, when compared to explicit simulations of the reaction process, is
increasing proportional to the extrapolated volume of the cell.Comment: 8 pages, 4 figures, submitted to J. Chem. Phy
How proteins squeeze through polymer networks: a Cartesian lattice study
In this paper a lattice model for the diffusional transport of particles in
the interphase cell nucleus is proposed. The dynamic behaviour of single chains
on the lattice is investigated and Rouse scaling is verified. Dynamical dense
networks are created by a combined version of the bond fluctuation method and a
Metropolis Monte Carlo algorithm. Semidilute behaviour of the dense chain
networks is shown. By comparing diffusion of particles in a static and a
dynamical chain network, we demonstrate that chain diffusion does not alter the
diffusion process of small particles. However, we prove that a dynamical
network facilitates the transport of large particles. By weighting the mean
square displacement trajectories of particles in the static chain network data
from the dynamical network can be reconstructed. Additionally, it is shown that
subdiffusive behaviour of particles on short time scales results from trapping
processes in the crowded environment of the chain network. In the presented
model a protein with 30 nm diameter has an effective diffusion coefficient of
1.24E-11 m^2/s in a chromatin fiber network.Comment: submitted to J. Chem. Phy
Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition
Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions
In support of descriptive studies; relevance to translational research
The contemporary scientific establishment equates hypothesis testing to good science. This stance bypasses the preliminary need to identify a worthwhile hypothesis through rigorous observation of natural processes. If alleviation of human suffering is claimed as the goal of a scientific undertaking, it would be unfair to test a hypothesis whose relevance to human disease has not been satisfactorily proven. Here, we argue that descriptive investigations based on direct human observation should be highly valued and regarded essential for the selection of worthwhile hypotheses while the pursuit of costly scientific investigations without such evidence is a desecration of the cause upon which biomedical research is grounded
The Effective Fragment Molecular Orbital Method for Fragments Connected by Covalent Bonds
We extend the effective fragment molecular orbital method (EFMO) into
treating fragments connected by covalent bonds. The accuracy of EFMO is
compared to FMO and conventional ab initio electronic structure methods for
polypeptides including proteins. Errors in energy for RHF and MP2 are within 2
kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides
similar to FMO but obtained two to five times faster. For proteins, the errors
are also within a few kcal/mol of the FMO results. We developed both the RHF
and MP2 gradient for EFMO. Compared to ab initio, the EFMO optimized structures
had an RMSD of 0.40 and 0.44 {\AA} for RHF and MP2, respectively.Comment: Revised manuscrip
Structure of the hDmc1-ssDNA filament reveals the principles of its architecture
In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination
Deconstructing the Late Phase of Vimentin Assembly by Total Internal Reflection Fluorescence Microscopy (TIRFM)
Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several µm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 µm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The ‘patchy’ structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments
Accelerating the Gillespie τ-Leaping Method Using Graphics Processing Units
The Gillespie τ-Leaping Method is an approximate algorithm that is faster than the exact Direct Method (DM) due to the progression of the simulation with larger time steps. However, the procedure to compute the time leap τ is quite expensive. In this paper, we explore the acceleration of the τ-Leaping Method using Graphics Processing Unit (GPUs) for ultra-large networks ( reaction channels). We have developed data structures and algorithms that take advantage of the unique hardware architecture and available libraries. Our results show that we obtain a performance gain of over 60x when compared with the best conventional implementations
Some Causes of the Variable Shape of Flocks of Birds
Flocks of birds are highly variable in shape in all contexts (while travelling, avoiding predation, wheeling above the roost). Particularly amazing in this respect are the aerial displays of huge flocks of starlings (Sturnus vulgaris) above the sleeping site at dawn. The causes of this variability are hardly known, however. Here we hypothesise that variability of shape increases when there are larger local differences in movement behaviour in the flock. We investigate this hypothesis with the help of a model of the self-organisation of travelling groups, called StarDisplay, since such a model has also increased our understanding of what causes the oblong shape of schools of fish. The flocking patterns in the model prove to resemble those of real birds, in particular of starlings and rock doves. As to shape, we measure the relative proportions of the flock in several ways, which either depend on the direction of movement or do not. We confirm that flock shape is usually more variable when local differences in movement in the flock are larger. This happens when a) flock size is larger, b) interacting partners are fewer, c) the flock turnings are stronger, and d) individuals roll into the turn. In contrast to our expectations, when variability of speed in the flock is higher, flock shape and the positions of members in the flock are more static. We explain this and indicate the adaptive value of low variability of speed and spatial restriction of interaction and develop testable hypotheses
Repulsive Forces Between Looping Chromosomes Induce Entropy-Driven Segregation
One striking feature of chromatin organization is that chromosomes are compartmentalized into distinct territories during interphase, the degree of intermingling being much smaller than expected for linear chains. A growing body of evidence indicates that the formation of loops plays a dominant role in transcriptional regulation as well as the entropic organization of interphase chromosomes. Using a recently proposed model, we quantitatively determine the entropic forces between chromosomes. This Dynamic Loop Model assumes that loops form solely on the basis of diffusional motion without invoking other long-range interactions. We find that introducing loops into the structure of chromatin results in a multi-fold higher repulsion between chromosomes compared to linear chains. Strong effects are observed for the tendency of a non-random alignment; the overlap volume between chromosomes decays fast with increasing loop number. Our results suggest that the formation of chromatin loops imposes both compartmentalization as well as order on the system without requiring additional energy-consuming processes
- …